Inhibition of memory by a microRNA negative feedback loop that downregulates SNARE-mediated vesicle transport

  1. Rebecca S Mathew
  2. Antonis Tatarakis
  3. Andrii Rudenko
  4. Erin M Johnson-Venkatesh
  5. Yawei J Yang
  6. Elisabeth A Murphy
  7. Travis P Todd
  8. Scott P Schepers
  9. Nertila Siuti
  10. Anthony J Martorell
  11. William A Falls
  12. Sayamwong E Hammack
  13. Christopher A Walsh
  14. Li-Huei Tsai
  15. Hisashi Umemori
  16. Mark E Bouton
  17. Danesh Moazed  Is a corresponding author
  1. Howard Hughes Medical Institute, Harvard Medical School, United States
  2. The City College of the City University of New York, United States
  3. Harvard Medical School, United States
  4. Howard Hughes Medical Institute, Boston Children's Hospital, United States
  5. University of Vermont, United States
  6. Massachusetts Institute of Technology, United States

Abstract

The SNARE-mediated vesicular transport pathway plays major roles in synaptic remodeling associated with formation of long-term memories, but the mechanisms that regulate this pathway during memory acquisition are not fully understood. Here we identify miRNAs that are up-regulated in the rodent hippocampus upon contextual fear-conditioning and identify the vesicular transport and synaptogenesis pathways as the major targets of the fear-induced miRNAs. We demonstrate that miR-153, a member of this group, inhibits the expression of key components of the vesicular transport machinery, and down-regulates Glutamate receptor A1 trafficking and neurotransmitter release. MiR-153 expression is specifically induced during LTP induction in hippocampal slices and its knockdown in the hippocampus of adult mice results in enhanced fear memory. Our results suggest that miR-153, and possibly other fear-induced miRNAs, act as components of a negative feedback loop that blocks neuronal hyperactivity at least partly through the inhibition of the vesicular transport pathway.

Article and author information

Author details

  1. Rebecca S Mathew

    Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Antonis Tatarakis

    Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Andrii Rudenko

    Department of Biology, The City College of the City University of New York, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Erin M Johnson-Venkatesh

    Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Yawei J Yang

    Division of Genetics, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Elisabeth A Murphy

    Division of Genetics, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Travis P Todd

    Department of Psychology, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Scott P Schepers

    Department of Psychology, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8051-7541
  9. Nertila Siuti

    Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Anthony J Martorell

    The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. William A Falls

    Department of Psychology, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Sayamwong E Hammack

    Department of Psychology, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Christopher A Walsh

    Division of Genetics, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Li-Huei Tsai

    The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Hisashi Umemori

    Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7198-2062
  16. Mark E Bouton

    Department of Psychology, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Danesh Moazed

    Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
    For correspondence
    danesh@hms.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0321-6221

Funding

Howard Hughes Medical Institute

  • Danesh Moazed

Howard Hughes Medical Institute

  • Christopher A Walsh

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols of Harvard Medical School. The protocol was approved by the Committee on the Ethics of Animal Experiments of Harvard Medical School. All surgery was performed under sodium pentobarbital anesthesia, and every effort was made to minimize suffering.

Copyright

© 2016, Mathew et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rebecca S Mathew
  2. Antonis Tatarakis
  3. Andrii Rudenko
  4. Erin M Johnson-Venkatesh
  5. Yawei J Yang
  6. Elisabeth A Murphy
  7. Travis P Todd
  8. Scott P Schepers
  9. Nertila Siuti
  10. Anthony J Martorell
  11. William A Falls
  12. Sayamwong E Hammack
  13. Christopher A Walsh
  14. Li-Huei Tsai
  15. Hisashi Umemori
  16. Mark E Bouton
  17. Danesh Moazed
(2016)
Inhibition of memory by a microRNA negative feedback loop that downregulates SNARE-mediated vesicle transport
eLife 5:e22467.
https://doi.org/10.7554/eLife.22467

Share this article

https://doi.org/10.7554/eLife.22467

Further reading

    1. Cell Biology
    Marjan Slak Rupnik
    Insight

    Functional subpopulations of β-cells emerge to control pulsative insulin secretion in the pancreatic islets of mice through calcium oscillations.

    1. Cell Biology
    Erli Jin, Jennifer K Briggs ... Matthew J Merrins
    Research Article

    Oscillations in insulin secretion, driven by islet Ca2+ waves, are crucial for glycemic control. Prior studies, performed with single-plane imaging, suggest that subpopulations of electrically coupled β-cells have privileged roles in leading and coordinating the propagation of Ca2+ waves. Here, we used three-dimensional (3D) light-sheet imaging to analyze the location and Ca2+ activity of single β-cells within the entire islet at >2 Hz. In contrast with single-plane studies, 3D network analysis indicates that the most highly synchronized β-cells are located at the islet center, and remain regionally but not cellularly stable between oscillations. This subpopulation, which includes ‘hub cells’, is insensitive to changes in fuel metabolism induced by glucokinase and pyruvate kinase activation. β-Cells that initiate the Ca2+ wave (leaders) are located at the islet periphery, and strikingly, change their identity over time via rotations in the wave axis. Glucokinase activation, which increased oscillation period, reinforced leader cells and stabilized the wave axis. Pyruvate kinase activation, despite increasing oscillation frequency, had no effect on leader cells, indicating the wave origin is patterned by fuel input. These findings emphasize the stochastic nature of the β-cell subpopulations that control Ca2+ oscillations and identify a role for glucokinase in spatially patterning ‘leader’ β-cells.