Inhibition of memory by a microRNA negative feedback loop that downregulates SNARE-mediated vesicle transport

  1. Rebecca S Mathew
  2. Antonis Tatarakis
  3. Andrii Rudenko
  4. Erin M Johnson-Venkatesh
  5. Yawei J Yang
  6. Elisabeth A Murphy
  7. Travis P Todd
  8. Scott P Schepers
  9. Nertila Siuti
  10. Anthony J Martorell
  11. William A Falls
  12. Sayamwong E Hammack
  13. Christopher A Walsh
  14. Li-Huei Tsai
  15. Hisashi Umemori
  16. Mark E Bouton
  17. Danesh Moazed  Is a corresponding author
  1. Howard Hughes Medical Institute, Harvard Medical School, United States
  2. The City College of the City University of New York, United States
  3. Harvard Medical School, United States
  4. Howard Hughes Medical Institute, Boston Children's Hospital, United States
  5. University of Vermont, United States
  6. Massachusetts Institute of Technology, United States

Abstract

The SNARE-mediated vesicular transport pathway plays major roles in synaptic remodeling associated with formation of long-term memories, but the mechanisms that regulate this pathway during memory acquisition are not fully understood. Here we identify miRNAs that are up-regulated in the rodent hippocampus upon contextual fear-conditioning and identify the vesicular transport and synaptogenesis pathways as the major targets of the fear-induced miRNAs. We demonstrate that miR-153, a member of this group, inhibits the expression of key components of the vesicular transport machinery, and down-regulates Glutamate receptor A1 trafficking and neurotransmitter release. MiR-153 expression is specifically induced during LTP induction in hippocampal slices and its knockdown in the hippocampus of adult mice results in enhanced fear memory. Our results suggest that miR-153, and possibly other fear-induced miRNAs, act as components of a negative feedback loop that blocks neuronal hyperactivity at least partly through the inhibition of the vesicular transport pathway.

Article and author information

Author details

  1. Rebecca S Mathew

    Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Antonis Tatarakis

    Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Andrii Rudenko

    Department of Biology, The City College of the City University of New York, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Erin M Johnson-Venkatesh

    Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Yawei J Yang

    Division of Genetics, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Elisabeth A Murphy

    Division of Genetics, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Travis P Todd

    Department of Psychology, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Scott P Schepers

    Department of Psychology, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8051-7541
  9. Nertila Siuti

    Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Anthony J Martorell

    The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. William A Falls

    Department of Psychology, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Sayamwong E Hammack

    Department of Psychology, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Christopher A Walsh

    Division of Genetics, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Li-Huei Tsai

    The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Hisashi Umemori

    Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7198-2062
  16. Mark E Bouton

    Department of Psychology, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Danesh Moazed

    Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
    For correspondence
    danesh@hms.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0321-6221

Funding

Howard Hughes Medical Institute

  • Danesh Moazed

Howard Hughes Medical Institute

  • Christopher A Walsh

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols of Harvard Medical School. The protocol was approved by the Committee on the Ethics of Animal Experiments of Harvard Medical School. All surgery was performed under sodium pentobarbital anesthesia, and every effort was made to minimize suffering.

Reviewing Editor

  1. Gary L Westbrook, Vollum Institute, United States

Publication history

  1. Received: October 26, 2016
  2. Accepted: December 20, 2016
  3. Accepted Manuscript published: December 21, 2016 (version 1)
  4. Accepted Manuscript updated: December 24, 2016 (version 2)
  5. Version of Record published: February 6, 2017 (version 3)

Copyright

© 2016, Mathew et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,816
    Page views
  • 728
    Downloads
  • 25
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rebecca S Mathew
  2. Antonis Tatarakis
  3. Andrii Rudenko
  4. Erin M Johnson-Venkatesh
  5. Yawei J Yang
  6. Elisabeth A Murphy
  7. Travis P Todd
  8. Scott P Schepers
  9. Nertila Siuti
  10. Anthony J Martorell
  11. William A Falls
  12. Sayamwong E Hammack
  13. Christopher A Walsh
  14. Li-Huei Tsai
  15. Hisashi Umemori
  16. Mark E Bouton
  17. Danesh Moazed
(2016)
Inhibition of memory by a microRNA negative feedback loop that downregulates SNARE-mediated vesicle transport
eLife 5:e22467.
https://doi.org/10.7554/eLife.22467

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Hayley Porter, Yang Li ... Suzana Hadjur
    Research Article Updated

    Most studies of cohesin function consider the Stromalin Antigen (STAG/SA) proteins as core complex members given their ubiquitous interaction with the cohesin ring. Here, we provide functional data to support the notion that the SA subunit is not a mere passenger in this structure, but instead plays a key role in the localization of cohesin to diverse biological processes and promotes loading of the complex at these sites. We show that in cells acutely depleted for RAD21, SA proteins remain bound to chromatin, cluster in 3D and interact with CTCF, as well as with a wide range of RNA binding proteins involved in multiple RNA processing mechanisms. Accordingly, SA proteins interact with RNA, and R-loops, even in the absence of cohesin. Our results place SA1 on chromatin upstream of the cohesin ring and reveal a role for SA1 in cohesin loading which is independent of NIPBL, the canonical cohesin loader. We propose that SA1 takes advantage of structural R-loop platforms to link cohesin loading and chromatin structure with diverse functions. Since SA proteins are pan-cancer targets, and R-loops play an increasingly prevalent role in cancer biology, our results have important implications for the mechanistic understanding of SA proteins in cancer and disease.

    1. Cell Biology
    Emmeline Marchal-Duval, Méline Homps-Legrand ... Arnaud A Mailleux
    Research Article

    Matrix remodeling is a salient feature of idiopathic pulmonary fibrosis (IPF). Targeting cells driving matrix remodeling could be a promising avenue for IPF treatment. Analysis of transcriptomic database identified the mesenchymal transcription factor PRRX1 as upregulated in IPF. PRRX1, strongly expressed by lung fibroblasts, was regulated by a TGF-b/PGE2 balance in vitro in control and IPF human lung fibroblasts, while IPF fibroblast-derived matrix increased PRRX1 expression in a PDGFR dependent manner in control ones. PRRX1 inhibition decreased human lung fibroblast proliferation by downregulating the expression of S phase cyclins. PRRX1 inhibition also impacted TGF-β driven myofibroblastic differentiation by inhibiting SMAD2/3 phosphorylation through phosphatase PPM1A upregulation and TGFBR2 downregulation, leading to TGF-β response global decrease. Finally, targeted inhibition of Prrx1 attenuated fibrotic remodeling in vivo with intra-tracheal antisense oligonucleotides in bleomycin mouse model of lung fibrosis and ex vivo using human and mouse precision-cut lung slices. Our results identified PRRX1 as a key mesenchymal transcription factor during lung fibrogenesis.