A microRNA negative feedback loop downregulates vesicle transport and inhibits fear memory

  1. Rebecca S Mathew
  2. Antonis Tatarakis
  3. Andrii Rudenko
  4. Erin M Johnson-Venkatesh
  5. Yawei J Yang
  6. Elisabeth A Murphy
  7. Travis P Todd
  8. Scott T Schepers
  9. Nertila Siuti
  10. Anthony J Martorell
  11. William A Falls
  12. Sayamwong E Hammack
  13. Christopher A Walsh
  14. Li-Huei Tsai
  15. Hisashi Umemori
  16. Mark E Bouton
  17. Danesh Moazed  Is a corresponding author
  1. Howard Hughes Medical Institute, Harvard Medical School, United States
  2. The City College of the City University of New York, United States
  3. Harvard Medical School, United States
  4. Howard Hughes Medical Institute, Boston Children's Hospital, United States
  5. University of Vermont, United States
  6. Massachusetts Institute of Technology, United States

Abstract

The SNARE-mediated vesicular transport pathway plays major roles in synaptic remodeling associated with formation of long-term memories, but the mechanisms that regulate this pathway during memory acquisition are not fully understood. Here we identify miRNAs that are up-regulated in the rodent hippocampus upon contextual fear-conditioning and identify the vesicular transport and synaptogenesis pathways as the major targets of the fear-induced miRNAs. We demonstrate that miR-153, a member of this group, inhibits the expression of key components of the vesicular transport machinery, and down-regulates Glutamate receptor A1 trafficking and neurotransmitter release. MiR-153 expression is specifically induced during LTP induction in hippocampal slices and its knockdown in the hippocampus of adult mice results in enhanced fear memory. Our results suggest that miR-153, and possibly other fear-induced miRNAs, act as components of a negative feedback loop that blocks neuronal hyperactivity at least partly through the inhibition of the vesicular transport pathway.

Article and author information

Author details

  1. Rebecca S Mathew

    Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Antonis Tatarakis

    Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Andrii Rudenko

    Department of Biology, The City College of the City University of New York, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Erin M Johnson-Venkatesh

    Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Yawei J Yang

    Division of Genetics, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Elisabeth A Murphy

    Division of Genetics, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Travis P Todd

    Department of Psychology, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Scott T Schepers

    Department of Psychology, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8051-7541
  9. Nertila Siuti

    Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Anthony J Martorell

    The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. William A Falls

    Department of Psychology, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Sayamwong E Hammack

    Department of Psychology, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Christopher A Walsh

    Division of Genetics, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Li-Huei Tsai

    The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Hisashi Umemori

    Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7198-2062
  16. Mark E Bouton

    Department of Psychology, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Danesh Moazed

    Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
    For correspondence
    danesh@hms.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0321-6221

Funding

Howard Hughes Medical Institute

  • Danesh Moazed

Howard Hughes Medical Institute

  • Christopher A Walsh

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols of Harvard Medical School. The protocol was approved by the Committee on the Ethics of Animal Experiments of Harvard Medical School. All surgery was performed under sodium pentobarbital anesthesia, and every effort was made to minimize suffering.

Copyright

© 2016, Mathew et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,956
    views
  • 740
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rebecca S Mathew
  2. Antonis Tatarakis
  3. Andrii Rudenko
  4. Erin M Johnson-Venkatesh
  5. Yawei J Yang
  6. Elisabeth A Murphy
  7. Travis P Todd
  8. Scott T Schepers
  9. Nertila Siuti
  10. Anthony J Martorell
  11. William A Falls
  12. Sayamwong E Hammack
  13. Christopher A Walsh
  14. Li-Huei Tsai
  15. Hisashi Umemori
  16. Mark E Bouton
  17. Danesh Moazed
(2016)
A microRNA negative feedback loop downregulates vesicle transport and inhibits fear memory
eLife 5:e22467.
https://doi.org/10.7554/eLife.22467

Share this article

https://doi.org/10.7554/eLife.22467

Further reading

    1. Cancer Biology
    2. Cell Biology
    Salam Dabsan, Gali Zur ... Aeid Igbaria
    Research Article

    The endoplasmic reticulum (ER) is an essential sensing organelle responsible for the folding and secretion of almost one-third of eukaryotic cells' total proteins. However, environmental, chemical, and genetic insults often lead to protein misfolding in the ER, accumulating misfolded proteins, and causing ER stress. To solve this, several mechanisms were reported to relieve ER stress by decreasing the ER protein load. Recently, we reported a novel ER surveillance mechanism by which proteins from the secretory pathway are refluxed to the cytosol to relieve the ER of its content. The refluxed proteins gain new prosurvival functions in cancer cells, thereby increasing cancer cell fitness. We termed this phenomenon ER to CYtosol Signaling (or ‘ERCYS’). Here, we found that in mammalian cells, ERCYS is regulated by DNAJB12, DNAJB14, and the HSC70 cochaperone SGTA. Mechanistically, DNAJB12 and DNAJB14 bind HSC70 and SGTA - through their cytosolically localized J-domains to facilitate ER-protein reflux. DNAJB12 is necessary and sufficient to drive this phenomenon to increase AGR2 reflux and inhibit wt-p53 during ER stress. Mutations in DNAJB12/14 J-domain prevent the inhibitory interaction between AGR2-wt-p53. Thus, targeting the DNAJB12/14-HSC70/SGTA axis is a promising strategy to inhibit ERCYS and impair cancer cell fitness.

    1. Cancer Biology
    2. Cell Biology
    Brooke A Conti, Leo Novikov ... Mariano Oppikofer
    Research Article

    DNA base lesions, such as incorporation of uracil into DNA or base mismatches, can be mutagenic and toxic to replicating cells. To discover factors in repair of genomic uracil, we performed a CRISPR knockout screen in the presence of floxuridine, a chemotherapeutic agent that incorporates uracil and fluorouracil into DNA. We identified known factors, such as uracil DNA N-glycosylase (UNG), and unknown factors, such as the N6-adenosine methyltransferase, METTL3, as required to overcome floxuridine-driven cytotoxicity. Visualized with immunofluorescence, the product of METTL3 activity, N6-methyladenosine, formed nuclear foci in cells treated with floxuridine. The observed N6-methyladenosine was embedded in DNA, called 6mA, and these results were confirmed using an orthogonal approach, liquid chromatography coupled to tandem mass spectrometry. METTL3 and 6mA were required for repair of lesions driven by additional base-damaging agents, including raltitrexed, gemcitabine, and hydroxyurea. Our results establish a role for METTL3 and 6mA in promoting genome stability in mammalian cells, especially in response to base damage.