Abstract

Seed dormancy is a complex life history trait that determines the timing of germination and is crucial for local adaptation. Genetic studies of dormancy are challenging, because the trait is highly plastic and strongly influenced by the maternal environment. Using a combination of statistical and experimental approaches, we show that multiple alleles at the previously identified dormancy locus DELAY OF GERMINATION1 jointly explain as much as 57% of the variation observed in Swedish Arabidopsis thaliana, but give rise to spurious associations that seriously mislead genome-wide association studies unless modeled correctly. Field experiments confirm that the major alleles affect germination as well as survival under natural conditions, and demonstrate that locally adaptive traits can sometimes be dissected genetically.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Envel Kerdaffrec

    Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8667-6850
  2. Danièle L Filiault

    Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
    Competing interests
    No competing interests declared.
  3. Arthur Korte

    Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0831-1463
  4. Eriko Sasaki

    Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
    Competing interests
    No competing interests declared.
  5. Viktoria Nizhynska

    Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
    Competing interests
    No competing interests declared.
  6. Ümit Seren

    Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
    Competing interests
    No competing interests declared.
  7. Magnus Nordborg

    Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
    For correspondence
    magnus.nordborg@gmi.oeaw.ac.at
    Competing interests
    Magnus Nordborg, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7178-9748

Funding

European Research Council (268962 (MAXMAP))

  • Magnus Nordborg

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Christian S Hardtke, University of Lausanne, Switzerland

Version history

  1. Received: October 19, 2016
  2. Accepted: December 13, 2016
  3. Accepted Manuscript published: December 14, 2016 (version 1)
  4. Accepted Manuscript updated: December 16, 2016 (version 2)
  5. Version of Record published: January 11, 2017 (version 3)

Copyright

© 2016, Kerdaffrec et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,890
    Page views
  • 779
    Downloads
  • 44
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Envel Kerdaffrec
  2. Danièle L Filiault
  3. Arthur Korte
  4. Eriko Sasaki
  5. Viktoria Nizhynska
  6. Ümit Seren
  7. Magnus Nordborg
(2016)
Multiple alleles at a single locus control seed dormancy in Swedish Arabidopsis
eLife 5:e22502.
https://doi.org/10.7554/eLife.22502

Share this article

https://doi.org/10.7554/eLife.22502

Further reading

    1. Plant Biology
    Ivan Kulich, Julia Schmid ... Jiří Friml
    Research Article

    Root gravitropic bending represents a fundamental aspect of terrestrial plant physiology. Gravity is perceived by sedimentation of starch-rich plastids (statoliths) to the bottom of the central root cap cells. Following gravity perception, intercellular auxin transport is redirected downwards leading to an asymmetric auxin accumulation at the lower root side causing inhibition of cell expansion, ultimately resulting in downwards bending. How gravity-induced statoliths repositioning is translated into asymmetric auxin distribution remains unclear despite PIN auxin efflux carriers and the Negative Gravitropic Response of roots (NGR) proteins polarize along statolith sedimentation, thus providing a plausible mechanism for auxin flow redirection. In this study, using a functional NGR1-GFP construct, we visualized the NGR1 localization on the statolith surface and plasma membrane (PM) domains in close proximity to the statoliths, correlating with their movements. We determined that NGR1 binding to these PM domains is indispensable for NGR1 functionality and relies on cysteine acylation and adjacent polybasic regions as well as on lipid and sterol PM composition. Detailed timing of the early events following graviperception suggested that both NGR1 repolarization and initial auxin asymmetry precede the visible PIN3 polarization. This discrepancy motivated us to unveil a rapid, NGR-dependent translocation of PIN-activating AGCVIII kinase D6PK towards lower PMs of gravity-perceiving cells, thus providing an attractive model for rapid redirection of auxin fluxes following gravistimulation.

    1. Plant Biology
    Daniel S Yu, Megan A Outram ... Simon J Williams
    Research Article

    Plant pathogens secrete proteins, known as effectors, that function in the apoplast or inside plant cells to promote virulence. Effector recognition by cell-surface or cytosolic receptors results in the activation of defence pathways and plant immunity. Despite their importance, our general understanding of fungal effector function and recognition by immunity receptors remains poor. One complication often associated with effectors is their high sequence diversity and lack of identifiable sequence motifs precluding prediction of structure or function. In recent years, several studies have demonstrated that fungal effectors can be grouped into structural classes, despite significant sequence variation and existence across taxonomic groups. Using protein X-ray crystallography, we identify a new structural class of effectors hidden within the secreted in xylem (SIX) effectors from Fusarium oxysporum f. sp. lycopersici (Fol). The recognised effectors Avr1 (SIX4) and Avr3 (SIX1) represent the founding members of the Fol dual-domain (FOLD) effector class, with members containing two distinct domains. Using AlphaFold2, we predicted the full SIX effector repertoire of Fol and show that SIX6 and SIX13 are also FOLD effectors, which we validated experimentally for SIX6. Based on structural prediction and comparisons, we show that FOLD effectors are present within three divisions of fungi and are expanded in pathogens and symbionts. Further structural comparisons demonstrate that Fol secretes effectors that adopt a limited number of structural folds during infection of tomato. This analysis also revealed a structural relationship between transcriptionally co-regulated effector pairs. We make use of the Avr1 structure to understand its recognition by the I receptor, which leads to disease resistance in tomato. This study represents an important advance in our understanding of Fol-tomato, and by extension plant–fungal interactions, which will assist in the development of novel control and engineering strategies to combat plant pathogens.