Structural reorganization of the chromatin remodeling enzyme Chd1 upon engagement with nucleosomes

  1. Ramasubramanian Sundaramoorthy
  2. Amanda L Hughes
  3. Vijender Singh
  4. Nicola Wiechens
  5. Daniel P Ryan
  6. Hassane El-Mkami
  7. Maxim Petoukhov
  8. Dmitri I svergun
  9. Barbara Treutlein
  10. Salina Quack
  11. Monika Fischer
  12. Jens Michaelis
  13. Bettina Böttcher
  14. David G Norman
  15. Tom Owen-Hughes  Is a corresponding author
  1. University of Dundee, United Kingdom
  2. The Australian National University, Australia
  3. University of St Andrews, United Kingdom
  4. European Molecular Biology Laboratory, Germany
  5. Max Planck Institute for Evolutionary Anthropolgy, Germany
  6. Ulm University, Germany
  7. Universitat Würzburg, Germany

Abstract

The yeast Chd1 protein acts to position nucleosomes across genomes. Here we model the structure of the Chd1 protein in solution and when bound to nucleosomes. In the apo state the DNA binding domain contacts the edge of the nucleosome while in the presence of the non-hydrolyzable ATP analog, ADP-beryllium fluoride, we observe additional interactions between the ATPase domain and the adjacent DNA gyre 1.5 helical turns from the dyad axis of symmetry. Binding in this conformation involves unravelling the outer turn of nucleosomal DNA and requires substantial reorientation of the DNA binding domain with respect to the ATPase domains. The orientation of the DNA-binding domain is mediated by sequences in the N-terminus and mutations to this part of the protein have positive and negative effects on Chd1 activity. These observations indicate that the unfavourable alignment of C-terminal DNA binding region in solution contributes to an auto-inhibited state.

Data availability

The following data sets were generated
    1. Ramasubramanian Sundaramoorthy
    (2016) Chd1-nuc-engaged
    Publicly available at the Electron Microscopy Data Bank (accession no. EMDB-3502).
    1. Vijender Singh
    (2016) Chd1 Nuc Seq
    Publicly available at the EMBL European Archive (accession no: PRJEB15701).
    1. Ramasubramanian Sundaramoorthy
    (2016) Chd1-nuc apo
    Publicly available at the Electron Microscopy Data Bank (accession no. EMDB-3517).
    1. Ramasubramanian Sundaramoorthy
    (2016) SAXS
    Publicly available at the Small Angle Scattering Biological Data Bank (accession no. SASDBU7).
    1. Ramasubramanian Sundaramoorthy
    (2016) SAXS
    Publicly available at the Small Angle Scattering Biological Data Bank (accession no. SASDBV7).
    1. Ramasubramanian Sundaramoorthy
    (2016) SAXS
    Publicly available at the Small Angle Scattering Biological Data Bank (accession no. SASDBW7).
    1. Ramasubramanian Sundaramoorthy
    (2016) SAXS
    Publicly available at the Small Angle Scattering Biological Data Bank (accession no. SASDBX7).
    1. Ramasubramanian Sundaramoorthy
    (2016) SAXS
    Publicly available at the Small Angle Scattering Biological Data Bank (accession no. SASDBY7).

Article and author information

Author details

  1. Ramasubramanian Sundaramoorthy

    Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Amanda L Hughes

    Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Vijender Singh

    Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Nicola Wiechens

    Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Daniel P Ryan

    Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9842-2620
  6. Hassane El-Mkami

    School of Physics and Astronomy, University of St Andrews, St Andrews, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Maxim Petoukhov

    Hamburg Outstation, European Molecular Biology Laboratory, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Dmitri I svergun

    Hamburg Outstation, European Molecular Biology Laboratory, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Barbara Treutlein

    Max Planck Institute for Evolutionary Anthropolgy, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Salina Quack

    Institute for Biophysics, Ulm University, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Monika Fischer

    Institute for Biophysics, Ulm University, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Jens Michaelis

    Institute for Biophysics, Ulm University, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Bettina Böttcher

    Lehrstuhl für Biochemie, Universitat Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  14. David G Norman

    Nucelic Acids Structure Research Group, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7658-7720
  15. Tom Owen-Hughes

    Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
    For correspondence
    t.a.owenhughes@dundee.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0618-8185

Funding

Wellcome (95062)

  • Ramasubramanian Sundaramoorthy
  • Amanda L Hughes
  • Vijender Singh
  • Nicola Wiechens
  • Tom Owen-Hughes

Wellcome (097945/B/11/Z)

  • Ramasubramanian Sundaramoorthy
  • Amanda L Hughes
  • Vijender Singh
  • Nicola Wiechens
  • Tom Owen-Hughes

Wellcome (099149/Z/12/Z)

  • Ramasubramanian Sundaramoorthy
  • Hassane El-Mkami
  • David G Norman
  • Tom Owen-Hughes

Wellcome (97945)

  • Ramasubramanian Sundaramoorthy
  • Amanda L Hughes
  • Nicola Wiechens
  • Daniel P Ryan
  • David G Norman
  • Tom Owen-Hughes

European Molecular Biology Organization (ALTF 380-2015)

  • Amanda L Hughes

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Sundaramoorthy et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,137
    views
  • 761
    downloads
  • 51
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ramasubramanian Sundaramoorthy
  2. Amanda L Hughes
  3. Vijender Singh
  4. Nicola Wiechens
  5. Daniel P Ryan
  6. Hassane El-Mkami
  7. Maxim Petoukhov
  8. Dmitri I svergun
  9. Barbara Treutlein
  10. Salina Quack
  11. Monika Fischer
  12. Jens Michaelis
  13. Bettina Böttcher
  14. David G Norman
  15. Tom Owen-Hughes
(2017)
Structural reorganization of the chromatin remodeling enzyme Chd1 upon engagement with nucleosomes
eLife 6:e22510.
https://doi.org/10.7554/eLife.22510

Share this article

https://doi.org/10.7554/eLife.22510

Further reading

    1. Chromosomes and Gene Expression
    2. Structural Biology and Molecular Biophysics
    Liza Dahal, Thomas GW Graham ... Xavier Darzacq
    Research Article

    Type II nuclear receptors (T2NRs) require heterodimerization with a common partner, the retinoid X receptor (RXR), to bind cognate DNA recognition sites in chromatin. Based on previous biochemical and overexpression studies, binding of T2NRs to chromatin is proposed to be regulated by competition for a limiting pool of the core RXR subunit. However, this mechanism has not yet been tested for endogenous proteins in live cells. Using single-molecule tracking (SMT) and proximity-assisted photoactivation (PAPA), we monitored interactions between endogenously tagged RXR and retinoic acid receptor (RAR) in live cells. Unexpectedly, we find that higher expression of RAR, but not RXR, increases heterodimerization and chromatin binding in U2OS cells. This surprising finding indicates the limiting factor is not RXR but likely its cadre of obligate dimer binding partners. SMT and PAPA thus provide a direct way to probe which components are functionally limiting within a complex TF interaction network providing new insights into mechanisms of gene regulation in vivo with implications for drug development targeting nuclear receptors.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Angel D'Oliviera, Xuhang Dai ... Jeffrey S Mugridge
    Research Article

    The SARS-CoV-2 main protease (Mpro or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N2,N2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis. We find that Mpro can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. Evolutionary analysis shows the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. TRMT1 proteolysis results in reduced tRNA binding and elimination of tRNA methyltransferase activity. We also determined the structure of an Mpro-TRMT1 peptide complex that shows how TRMT1 engages the Mpro active site in an uncommon substrate binding conformation. Finally, enzymology and molecular dynamics simulations indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis following substrate binding. Together, these data provide new insights into substrate recognition by SARS-CoV-2 Mpro that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.