Structural reorganization of the chromatin remodeling enzyme Chd1 upon engagement with nucleosomes

  1. Ramasubramanian Sundaramoorthy
  2. Amanda L Hughes
  3. Vijender Singh
  4. Nicola Wiechens
  5. Daniel P Ryan
  6. Hassane El-Mkami
  7. Maxim Petoukhov
  8. Dmitri I svergun
  9. Barbara Treutlein
  10. Salina Quack
  11. Monika Fischer
  12. Jens Michaelis
  13. Bettina Böttcher
  14. David G Norman
  15. Tom Owen-Hughes  Is a corresponding author
  1. University of Dundee, United Kingdom
  2. The Australian National University, Australia
  3. University of St Andrews, United Kingdom
  4. European Molecular Biology Laboratory, Germany
  5. Max Planck Institute for Evolutionary Anthropolgy, Germany
  6. Ulm University, Germany
  7. Universitat Würzburg, Germany

Abstract

The yeast Chd1 protein acts to position nucleosomes across genomes. Here we model the structure of the Chd1 protein in solution and when bound to nucleosomes. In the apo state the DNA binding domain contacts the edge of the nucleosome while in the presence of the non-hydrolyzable ATP analog, ADP-beryllium fluoride, we observe additional interactions between the ATPase domain and the adjacent DNA gyre 1.5 helical turns from the dyad axis of symmetry. Binding in this conformation involves unravelling the outer turn of nucleosomal DNA and requires substantial reorientation of the DNA binding domain with respect to the ATPase domains. The orientation of the DNA-binding domain is mediated by sequences in the N-terminus and mutations to this part of the protein have positive and negative effects on Chd1 activity. These observations indicate that the unfavourable alignment of C-terminal DNA binding region in solution contributes to an auto-inhibited state.

Data availability

The following data sets were generated
    1. Ramasubramanian Sundaramoorthy
    (2016) Chd1-nuc-engaged
    Publicly available at the Electron Microscopy Data Bank (accession no. EMDB-3502).
    1. Vijender Singh
    (2016) Chd1 Nuc Seq
    Publicly available at the EMBL European Archive (accession no: PRJEB15701).
    1. Ramasubramanian Sundaramoorthy
    (2016) Chd1-nuc apo
    Publicly available at the Electron Microscopy Data Bank (accession no. EMDB-3517).
    1. Ramasubramanian Sundaramoorthy
    (2016) SAXS
    Publicly available at the Small Angle Scattering Biological Data Bank (accession no. SASDBU7).
    1. Ramasubramanian Sundaramoorthy
    (2016) SAXS
    Publicly available at the Small Angle Scattering Biological Data Bank (accession no. SASDBV7).
    1. Ramasubramanian Sundaramoorthy
    (2016) SAXS
    Publicly available at the Small Angle Scattering Biological Data Bank (accession no. SASDBW7).
    1. Ramasubramanian Sundaramoorthy
    (2016) SAXS
    Publicly available at the Small Angle Scattering Biological Data Bank (accession no. SASDBX7).
    1. Ramasubramanian Sundaramoorthy
    (2016) SAXS
    Publicly available at the Small Angle Scattering Biological Data Bank (accession no. SASDBY7).

Article and author information

Author details

  1. Ramasubramanian Sundaramoorthy

    Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Amanda L Hughes

    Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Vijender Singh

    Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Nicola Wiechens

    Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Daniel P Ryan

    Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9842-2620
  6. Hassane El-Mkami

    School of Physics and Astronomy, University of St Andrews, St Andrews, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Maxim Petoukhov

    Hamburg Outstation, European Molecular Biology Laboratory, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Dmitri I svergun

    Hamburg Outstation, European Molecular Biology Laboratory, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Barbara Treutlein

    Max Planck Institute for Evolutionary Anthropolgy, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Salina Quack

    Institute for Biophysics, Ulm University, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Monika Fischer

    Institute for Biophysics, Ulm University, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Jens Michaelis

    Institute for Biophysics, Ulm University, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Bettina Böttcher

    Lehrstuhl für Biochemie, Universitat Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  14. David G Norman

    Nucelic Acids Structure Research Group, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7658-7720
  15. Tom Owen-Hughes

    Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
    For correspondence
    t.a.owenhughes@dundee.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0618-8185

Funding

Wellcome (95062)

  • Ramasubramanian Sundaramoorthy
  • Amanda L Hughes
  • Vijender Singh
  • Nicola Wiechens
  • Tom Owen-Hughes

Wellcome (097945/B/11/Z)

  • Ramasubramanian Sundaramoorthy
  • Amanda L Hughes
  • Vijender Singh
  • Nicola Wiechens
  • Tom Owen-Hughes

Wellcome (099149/Z/12/Z)

  • Ramasubramanian Sundaramoorthy
  • Hassane El-Mkami
  • David G Norman
  • Tom Owen-Hughes

Wellcome (97945)

  • Ramasubramanian Sundaramoorthy
  • Amanda L Hughes
  • Nicola Wiechens
  • Daniel P Ryan
  • David G Norman
  • Tom Owen-Hughes

European Molecular Biology Organization (ALTF 380-2015)

  • Amanda L Hughes

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Sundaramoorthy et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,155
    views
  • 762
    downloads
  • 51
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ramasubramanian Sundaramoorthy
  2. Amanda L Hughes
  3. Vijender Singh
  4. Nicola Wiechens
  5. Daniel P Ryan
  6. Hassane El-Mkami
  7. Maxim Petoukhov
  8. Dmitri I svergun
  9. Barbara Treutlein
  10. Salina Quack
  11. Monika Fischer
  12. Jens Michaelis
  13. Bettina Böttcher
  14. David G Norman
  15. Tom Owen-Hughes
(2017)
Structural reorganization of the chromatin remodeling enzyme Chd1 upon engagement with nucleosomes
eLife 6:e22510.
https://doi.org/10.7554/eLife.22510

Share this article

https://doi.org/10.7554/eLife.22510

Further reading

    1. Structural Biology and Molecular Biophysics
    Christopher T Schafer, Raymond F Pauszek III ... David P Millar
    Research Article

    The canonical chemokine receptor CXCR4 and atypical receptor ACKR3 both respond to CXCL12 but induce different effector responses to regulate cell migration. While CXCR4 couples to G proteins and directly promotes cell migration, ACKR3 is G-protein-independent and scavenges CXCL12 to regulate extracellular chemokine levels and maintain CXCR4 responsiveness, thereby indirectly influencing migration. The receptors also have distinct activation requirements. CXCR4 only responds to wild-type CXCL12 and is sensitive to mutation of the chemokine. By contrast, ACKR3 recruits GPCR kinases (GRKs) and β-arrestins and promiscuously responds to CXCL12, CXCL12 variants, other peptides and proteins, and is relatively insensitive to mutation. To investigate the role of conformational dynamics in the distinct pharmacological behaviors of CXCR4 and ACKR3, we employed single-molecule FRET to track discrete conformational states of the receptors in real-time. The data revealed that apo-CXCR4 preferentially populates a high-FRET inactive state, while apo-ACKR3 shows little conformational preference and high transition probabilities among multiple inactive, intermediate and active conformations, consistent with its propensity for activation. Multiple active-like ACKR3 conformations are populated in response to agonists, compared to the single CXCR4 active-state. This and the markedly different conformational landscapes of the receptors suggest that activation of ACKR3 may be achieved by a broader distribution of conformational states than CXCR4. Much of the conformational heterogeneity of ACKR3 is linked to a single residue that differs between ACKR3 and CXCR4. The dynamic properties of ACKR3 may underly its inability to form productive interactions with G proteins that would drive canonical GPCR signaling.

    1. Immunology and Inflammation
    2. Structural Biology and Molecular Biophysics
    Ana Cristina Chang-Gonzalez, Aoi Akitsu ... Wonmuk Hwang
    Research Advance

    Increasing evidence suggests that mechanical load on the αβ T-cell receptor (TCR) is crucial for recognizing the antigenic peptide-bound major histocompatibility complex (pMHC) molecule. Our recent all-atom molecular dynamics (MD) simulations revealed that the inter-domain motion of the TCR is responsible for the load-induced catch bond behavior of the TCR-pMHC complex and peptide discrimination (Chang-Gonzalez et al., 2024). To further examine the generality of the mechanism, we perform all-atom MD simulations of the B7 TCR under different conditions for comparison with our previous simulations of the A6 TCR. The two TCRs recognize the same pMHC and have similar interfaces with pMHC in crystal structures. We find that the B7 TCR-pMHC interface stabilizes under ∼15 pN load using a conserved dynamic allostery mechanism that involves the asymmetric motion of the TCR chassis. However, despite forming comparable contacts with pMHC as A6 in the crystal structure, B7 has fewer high-occupancy contacts with pMHC and exhibits higher mechanical compliance during the simulation. These results indicate that the dynamic allostery common to the TCRαβ chassis can amplify slight differences in interfacial contacts into distinctive mechanical responses and nuanced biological outcomes.