Evolution of substrate specificity in a retained enzyme driven by gene loss

  1. Ana Lilia Juárez-Vázquez
  2. Janaka E Edirisinghe
  3. Ernesto A Verduzco-Castro
  4. Karolina Michalska
  5. Chenggang Wu
  6. Lianet Noda-García
  7. Gyorgy Babnigg
  8. Michael Endres
  9. Sofía Medina-Ruíz
  10. Julián Santoyo-Flores
  11. Mauricio Carrillo-Tripp
  12. Hung Ton-That
  13. Andrzej Joachimiak
  14. Christopher S Henry
  15. Francisco Barona-Gómez  Is a corresponding author
  1. Evolution of Metabolic Diversity Laboratory, Mexico
  2. Argonne National Laboratory, United States
  3. University of Texas Health Science Cent, United States
  4. Weizmann Institute of Science, Israel
  5. University of California, Berkeley, United States
  6. Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico
  7. Centro de Investigación en Matemáticas, Mexico
  8. University of Texas Health Science Center, United States

Abstract

The connection between gene loss and the functional adaptation of retained proteins is still poorly understood. We apply phylogenomics and metabolic modeling to detect bacterial species that are evolving by gene loss, with the finding that Actinomycetaceae genomes from human cavities are undergoing sizable reductions, including loss of L-histidine and L-tryptophan biosynthesis. We observe that the dual-substrate phosphoribosyl isomerase A or priA gene, at which these pathways converge, appears to coevolve with the occurrence of trp and his genes. Characterization of a dozen PriA homologs shows that these enzymes adapt from bifunctionality in the largest genomes, to a monofunctional, yet not necessarily specialized, inefficient form in genomes undergoing reduction. These functional changes are accomplished via mutations, which result from relaxation of purifying selection, in residues structurally mapped after sequence and X-ray structural analyses. Our results show how gene loss can drive the evolution of substrate specificity from retained enzymes.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Ana Lilia Juárez-Vázquez

    Evolution of Metabolic Diversity Laboratory, Irapuato, Mexico
    Competing interests
    The authors declare that no competing interests exist.
  2. Janaka E Edirisinghe

    Computing, Environment and Life Sciences Directorate, Argonne National Laboratory, Lemont, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ernesto A Verduzco-Castro

    Evolution of Metabolic Diversity Laboratory, Irapuato, Mexico
    Competing interests
    The authors declare that no competing interests exist.
  4. Karolina Michalska

    Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Lemont, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Chenggang Wu

    Department of Microbiology and Molecular Genetics, University of Texas Health Science Cent, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Lianet Noda-García

    Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  7. Gyorgy Babnigg

    Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Lemont, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Michael Endres

    Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Lemont, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Sofía Medina-Ruíz

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Julián Santoyo-Flores

    Laboratorio de la Diversidad Biomolecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
    Competing interests
    The authors declare that no competing interests exist.
  11. Mauricio Carrillo-Tripp

    Ciencias de la Computación, Centro de Investigación en Matemáticas, Guanajuato, Mexico
    Competing interests
    The authors declare that no competing interests exist.
  12. Hung Ton-That

    Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Andrzej Joachimiak

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Christopher S Henry

    Computing, Environment and Life Sciences Directorate, Argonne National Laboratory, Lemont, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Francisco Barona-Gómez

    Evolution of Metabolic Diversity Laboratory, Irapuato, Mexico
    For correspondence
    francisco.barona@cinvestav.mx
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1492-9497

Funding

Consejo Nacional de Ciencia y Tecnología (132376,179290)

  • Ana Lilia Juárez-Vázquez
  • Ernesto A Verduzco-Castro
  • Julián Santoyo-Flores
  • Mauricio Carrillo-Tripp

National Institutes of Health (GM094585)

  • Karolina Michalska
  • Gyorgy Babnigg
  • Michael Endres
  • Andrzej Joachimiak

US Department of Energy (DE-AC02-06CH11357)

  • Andrzej Joachimiak
  • Christopher S Henry

National Science Foundation (1611952)

  • Janaka E Edirisinghe
  • Christopher S Henry

National Institute of Dental and Craniofacial Research (DE017382)

  • Chenggang Wu
  • Hung Ton-That

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 3,147
    views
  • 540
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ana Lilia Juárez-Vázquez
  2. Janaka E Edirisinghe
  3. Ernesto A Verduzco-Castro
  4. Karolina Michalska
  5. Chenggang Wu
  6. Lianet Noda-García
  7. Gyorgy Babnigg
  8. Michael Endres
  9. Sofía Medina-Ruíz
  10. Julián Santoyo-Flores
  11. Mauricio Carrillo-Tripp
  12. Hung Ton-That
  13. Andrzej Joachimiak
  14. Christopher S Henry
  15. Francisco Barona-Gómez
(2017)
Evolution of substrate specificity in a retained enzyme driven by gene loss
eLife 6:e22679.
https://doi.org/10.7554/eLife.22679

Share this article

https://doi.org/10.7554/eLife.22679

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Angel D'Oliviera, Xuhang Dai ... Jeffrey S Mugridge
    Research Article

    The SARS-CoV-2 main protease (Mpro or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N2,N2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis. We find that Mpro can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. Evolutionary analysis shows the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. TRMT1 proteolysis results in reduced tRNA binding and elimination of tRNA methyltransferase activity. We also determined the structure of an Mpro-TRMT1 peptide complex that shows how TRMT1 engages the Mpro active site in an uncommon substrate binding conformation. Finally, enzymology and molecular dynamics simulations indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis following substrate binding. Together, these data provide new insights into substrate recognition by SARS-CoV-2 Mpro that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Qian Wang, Jinxin Liu ... Qian Liu
    Research Article

    Paramyxovirus membrane fusion requires an attachment protein for receptor binding and a fusion protein for membrane fusion triggering. Nipah virus (NiV) attachment protein (G) binds to ephrinB2 or -B3 receptors, and fusion protein (F) mediates membrane fusion. NiV-F is a class I fusion protein and is activated by endosomal cleavage. The crystal structure of a soluble GCN4-decorated NiV-F shows a hexamer-of-trimer assembly. Here, we used single-molecule localization microscopy to quantify the NiV-F distribution and organization on cell and virus-like particle membranes at a nanometer precision. We found that NiV-F on biological membranes forms distinctive clusters that are independent of endosomal cleavage or expression levels. The sequestration of NiV-F into dense clusters favors membrane fusion triggering. The nano-distribution and organization of NiV-F are susceptible to mutations at the hexamer-of-trimer interface, and the putative oligomerization motif on the transmembrane domain. We also show that NiV-F nanoclusters are maintained by NiV-F–AP-2 interactions and the clathrin coat assembly. We propose that the organization of NiV-F into nanoclusters facilitates membrane fusion triggering by a mixed population of NiV-F molecules with varied degrees of cleavage and opportunities for interacting with the NiV-G/receptor complex. These observations provide insights into the in situ organization and activation mechanisms of the NiV fusion machinery.