Biogenesis of phased siRNAs on membrane-bound polysomes in Arabidopsis

  1. Shengben Li
  2. Brandon Le
  3. Xuan Ma
  4. Shaofang Li
  5. Chenjiang You
  6. Yu Yu
  7. Bailong Zhang
  8. Lin Liu
  9. Lei Gao
  10. Ting Shi
  11. Yonghui Zhao
  12. Beixin Mo
  13. Xiaofeng Cao
  14. Xuemei Chen  Is a corresponding author
  1. University of California, Riverside, United States
  2. Shenzhen University, China
  3. Institute of Genetics and Developmental Biology, China

Abstract

Small RNAs are central players in RNA silencing, yet their cytoplasmic compartmentalization and the effects it may have on their activities have not been studied at the genomic scale. Here we report that Arabidopsis microRNAs (miRNAs) and small interfering RNAs (siRNAs) are distinctly partitioned between the endoplasmic reticulum (ER) and cytosol. All miRNAs are associated with membrane-bound polysomes (MBPs) as opposed to polysomes in general. The MBP association is functionally linked to a deeply conserved and tightly regulated activity of miRNAs - production of phased siRNAs (phasiRNAs) from select target RNAs. The phasiRNA precursor RNAs, thought to be noncoding, are on MBPs and are occupied by ribosomes in a manner that supports miRNA-triggered phasiRNA production, suggesting that ribosomes on the rough ER impact siRNA biogenesis. This study reveals global patterns of cytoplasmic partitioning of small RNAs and expands the known functions of ribosomes and ER.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Shengben Li

    Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Brandon Le

    Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Xuan Ma

    Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Shaofang Li

    Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Chenjiang You

    Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Yu Yu

    Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Bailong Zhang

    Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Lin Liu

    Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Lei Gao

    Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Ting Shi

    Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Yonghui Zhao

    Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Beixin Mo

    Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  13. Xiaofeng Cao

    State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  14. Xuemei Chen

    Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, United States
    For correspondence
    xuemei.chen@ucr.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5209-1157

Funding

Howard Hughes Medical Institute

  • Xuemei Chen

Gordon and Betty Moore Foundation (GBMF3046)

  • Xuemei Chen

National Institutes of Health (GM061146)

  • Xuemei Chen

Guangdong Innovation Research Team Funds (2014ZT05S078)

  • Xuemei Chen

National Science Foundation of China (91440105)

  • Xuemei Chen

Shenzhen municipality (JCYJ20151116155209176)

  • Shengben Li

Shenzhen municipality (KQCX2015033110464302)

  • Shengben Li

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Yijun Qi, Tsinghua University, China

Version history

  1. Received: October 27, 2016
  2. Accepted: December 11, 2016
  3. Accepted Manuscript published: December 12, 2016 (version 1)
  4. Version of Record published: January 3, 2017 (version 2)
  5. Version of Record updated: August 10, 2017 (version 3)

Copyright

© 2016, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,715
    Page views
  • 1,381
    Downloads
  • 81
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shengben Li
  2. Brandon Le
  3. Xuan Ma
  4. Shaofang Li
  5. Chenjiang You
  6. Yu Yu
  7. Bailong Zhang
  8. Lin Liu
  9. Lei Gao
  10. Ting Shi
  11. Yonghui Zhao
  12. Beixin Mo
  13. Xiaofeng Cao
  14. Xuemei Chen
(2016)
Biogenesis of phased siRNAs on membrane-bound polysomes in Arabidopsis
eLife 5:e22750.
https://doi.org/10.7554/eLife.22750

Share this article

https://doi.org/10.7554/eLife.22750

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Monica Salinas-Pena, Elena Rebollo, Albert Jordan
    Research Article

    Histone H1 participates in chromatin condensation and regulates nuclear processes. Human somatic cells may contain up to seven histone H1 variants, although their functional heterogeneity is not fully understood. Here, we have profiled the differential nuclear distribution of the somatic H1 repertoire in human cells through imaging techniques including super-resolution microscopy. H1 variants exhibit characteristic distribution patterns in both interphase and mitosis. H1.2, H1.3, and H1.5 are universally enriched at the nuclear periphery in all cell lines analyzed and co-localize with compacted DNA. H1.0 shows a less pronounced peripheral localization, with apparent variability among different cell lines. On the other hand, H1.4 and H1X are distributed throughout the nucleus, being H1X universally enriched in high-GC regions and abundant in the nucleoli. Interestingly, H1.4 and H1.0 show a more peripheral distribution in cell lines lacking H1.3 and H1.5. The differential distribution patterns of H1 suggest specific functionalities in organizing lamina-associated domains or nucleolar activity, which is further supported by a distinct response of H1X or phosphorylated H1.4 to the inhibition of ribosomal DNA transcription. Moreover, H1 variants depletion affects chromatin structure in a variant-specific manner. Concretely, H1.2 knock-down, either alone or combined, triggers a global chromatin decompaction. Overall, imaging has allowed us to distinguish H1 variants distribution beyond the segregation in two groups denoted by previous ChIP-Seq determinations. Our results support H1 variants heterogeneity and suggest that variant-specific functionality can be shared between different cell types.

    1. Chromosomes and Gene Expression
    Signe Penner-Goeke, Elisabeth B Binder
    Insight

    A technique called mSTARR-seq sheds light on how DNA methylation may shape responses to external stimuli by altering the activity of sequences that control gene expression.