DNA-mediated association of two histone-bound CAF-1 complexes drives tetrasome assembly in the wake of DNA replication

  1. Francesca Mattiroli
  2. Yajie Gu
  3. Tejas Yadav
  4. Jeremy L Balsbaugh
  5. Michael R Harris
  6. Eileen S Findlay
  7. Yang Liu
  8. Catherine A Radebaugh
  9. Laurie A Stargell
  10. Natalie G Ahn
  11. Iestyn Whitehouse
  12. Karolin Luger  Is a corresponding author
  1. Howard Hughes Medical Institute, University of Colorado, Boulder, United States
  2. Weill Cornell Graduate School of Medical Sciences, United States
  3. University of Colorado, Boulder, United States
  4. Memorial Sloan Kettering Cancer Center, United States
  5. Colorado State University, United States

Abstract

Nucleosome assembly in the wake of DNA replication is a key process that regulates cell identity and survival. Chromatin assembly factor 1 (CAF-1) is a H3-H4 histone chaperone that associates with the replisome and orchestrates chromatin assembly following DNA synthesis. Little is known about the mechanism and structure of this key complex. Here we investigate the CAF-1•H3-H4 binding mode and the mechanism of nucleosome assembly. We show that CAF-1 binding to a H3-H4 dimer activates the Cac1 winged helix domain interaction with DNA. This drives the formation of a transient CAF-1•histone•DNA intermediate containing two CAF-1 complexes, each associated with one H3-H4 dimer. Here, the (H3-H4)2 tetramer is formed and deposited onto DNA. Our work elucidates the molecular mechanism for histone deposition by CAF-1, a reaction that has remained elusive for other histone chaperones, and it advances our understanding of how nucleosomes and their epigenetic information are maintained through DNA replication.

Article and author information

Author details

  1. Francesca Mattiroli

    Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1574-7217
  2. Yajie Gu

    Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Tejas Yadav

    Weill Cornell Graduate School of Medical Sciences, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jeremy L Balsbaugh

    Department of Chemistry and Biochemistry, University of Colorado, Boulder, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Michael R Harris

    Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Eileen S Findlay

    Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Yang Liu

    Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Catherine A Radebaugh

    Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Laurie A Stargell

    Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Natalie G Ahn

    Biofrontiers Institute, University of Colorado, Boulder, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Iestyn Whitehouse

    Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0385-3116
  12. Karolin Luger

    Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, Boulder, United States
    For correspondence
    karolin.luger@colorado.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5136-5331

Funding

Howard Hughes Medical Institute (Investigator)

  • Karolin Luger

National Institute of General Medical Sciences (GM067777)

  • Karolin Luger

European Molecular Biology Organization (ALTF 1267-2013)

  • Francesca Mattiroli

KWF Kankerbestrijding (2014-6649)

  • Francesca Mattiroli

National Science Foundation (MCB-1330019)

  • Laurie A Stargell

National Institute of General Medical Sciences (GM114594)

  • Natalie G Ahn

National Institute of General Medical Sciences (GM102253)

  • Iestyn Whitehouse

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Mattiroli et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,368
    views
  • 955
    downloads
  • 77
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Francesca Mattiroli
  2. Yajie Gu
  3. Tejas Yadav
  4. Jeremy L Balsbaugh
  5. Michael R Harris
  6. Eileen S Findlay
  7. Yang Liu
  8. Catherine A Radebaugh
  9. Laurie A Stargell
  10. Natalie G Ahn
  11. Iestyn Whitehouse
  12. Karolin Luger
(2017)
DNA-mediated association of two histone-bound CAF-1 complexes drives tetrasome assembly in the wake of DNA replication
eLife 6:e22799.
https://doi.org/10.7554/eLife.22799

Share this article

https://doi.org/10.7554/eLife.22799

Further reading

    1. Biochemistry and Chemical Biology
    Gabriella O Estevam, Edmond Linossi ... James S Fraser
    Research Article

    Mutations in the kinase and juxtamembrane domains of the MET Receptor Tyrosine Kinase are responsible for oncogenesis in various cancers and can drive resistance to MET-directed treatments. Determining the most effective inhibitor for each mutational profile is a major challenge for MET-driven cancer treatment in precision medicine. Here, we used a deep mutational scan (DMS) of ~5764 MET kinase domain variants to profile the growth of each mutation against a panel of 11 inhibitors that are reported to target the MET kinase domain. We validate previously identified resistance mutations, pinpoint common resistance sites across type I, type II, and type I ½ inhibitors, unveil unique resistance and sensitizing mutations for each inhibitor, and verify non-cross-resistant sensitivities for type I and type II inhibitor pairs. We augment a protein language model with biophysical and chemical features to improve the predictive performance for inhibitor-treated datasets. Together, our study demonstrates a pooled experimental pipeline for identifying resistance mutations, provides a reference dictionary for mutations that are sensitized to specific therapies, and offers insights for future drug development.

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Kira Breunig, Xuifen Lei ... Luiz O Penalva
    Research Article

    RNA binding proteins (RBPs) containing intrinsically disordered regions (IDRs) are present in diverse molecular complexes where they function as dynamic regulators. Their characteristics promote liquid-liquid phase separation (LLPS) and the formation of membraneless organelles such as stress granules and nucleoli. IDR-RBPs are particularly relevant in the nervous system and their dysfunction is associated with neurodegenerative diseases and brain tumor development. Serpine1 mRNA-binding protein 1 (SERBP1) is a unique member of this group, being mostly disordered and lacking canonical RNA-binding domains. We defined SERBP1’s interactome, uncovered novel roles in splicing, cell division and ribosomal biogenesis, and showed its participation in pathological stress granules and Tau aggregates in Alzheimer’s brains. SERBP1 preferentially interacts with other G-quadruplex (G4) binders, implicated in different stages of gene expression, suggesting that G4 binding is a critical component of SERBP1 function in different settings. Similarly, we identified important associations between SERBP1 and PARP1/polyADP-ribosylation (PARylation). SERBP1 interacts with PARP1 and its associated factors and influences PARylation. Moreover, protein complexes in which SERBP1 participates contain mostly PARylated proteins and PAR binders. Based on these results, we propose a feedback regulatory model in which SERBP1 influences PARP1 function and PARylation, while PARylation modulates SERBP1 functions and participation in regulatory complexes.