Mutational phospho-mimicry reveals a regulatory role for the XRCC4 and XLF C-terminal tails in modulating DNA bridging during classical non-homologous end joining

  1. Davide Normanno
  2. Aurélie Négrel
  3. Abinadabe J de Melo
  4. Stéphane Betzi
  5. Katheryn Meek
  6. Mauro Modesti  Is a corresponding author
  1. Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, France
  2. Sigma Aldrich, France
  3. Michigan State University, United States

Abstract

XRCC4 and DNA Ligase 4 (LIG4) form a tight complex that provides DNA ligase activity for classical non-homologous end joining (the predominant DNA double-strand break repair pathway in higher eukaryotes) and is stimulated by XLF. Independently of LIG4, XLF also associates with XRCC4 to form filaments that bridge DNA. These XRCC4/XLF complexes rapidly load and connect broken DNA, thereby stimulating intermolecular ligation. XRCC4 and XLF both include disordered C-terminal tails that are functionally dispensable in isolation but are phosphorylated in response to DNA damage by DNA-PK and/or ATM. Here we concomitantly modify the tails of XRCC4 and XLF by substituting fourteen previously identified phosphorylation sites with either alanine or aspartate residues. These phospho-blocking and -mimicking mutations impact both the stability and DNA bridging capacity of XRCC4/XLF complexes, but without affecting their ability to stimulate LIG4 activity. Implicit in this finding is that phosphorylation may regulate DNA bridging by XRCC4/XLF filaments.

Article and author information

Author details

  1. Davide Normanno

    Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Marseilles, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4740-5542
  2. Aurélie Négrel

    Sigma Aldrich, Saint Quentin Fallavier, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Abinadabe J de Melo

    Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Stéphane Betzi

    Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Katheryn Meek

    College of Veterinary Medicine, Michigan State University, East Lansing, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Mauro Modesti

    Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Marseille, France
    For correspondence
    mauro.modesti@inserm.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4964-331X

Funding

Fondation ARC pour la Recherche sur le Cancer (SFI20121205867)

  • Mauro Modesti

U.S. Public Health Service (AI048758)

  • Katheryn Meek

Institut National Du Cancer (PLBIO13-099)

  • Mauro Modesti

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Normanno et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,715
    views
  • 343
    downloads
  • 36
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Davide Normanno
  2. Aurélie Négrel
  3. Abinadabe J de Melo
  4. Stéphane Betzi
  5. Katheryn Meek
  6. Mauro Modesti
(2017)
Mutational phospho-mimicry reveals a regulatory role for the XRCC4 and XLF C-terminal tails in modulating DNA bridging during classical non-homologous end joining
eLife 6:e22900.
https://doi.org/10.7554/eLife.22900

Share this article

https://doi.org/10.7554/eLife.22900

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.

    1. Biochemistry and Chemical Biology
    2. Stem Cells and Regenerative Medicine
    Alejandro J Brenes, Eva Griesser ... Angus I Lamond
    Research Article

    Human induced pluripotent stem cells (hiPSCs) have great potential to be used as alternatives to embryonic stem cells (hESCs) in regenerative medicine and disease modelling. In this study, we characterise the proteomes of multiple hiPSC and hESC lines derived from independent donors and find that while they express a near-identical set of proteins, they show consistent quantitative differences in the abundance of a subset of proteins. hiPSCs have increased total protein content, while maintaining a comparable cell cycle profile to hESCs, with increased abundance of cytoplasmic and mitochondrial proteins required to sustain high growth rates, including nutrient transporters and metabolic proteins. Prominent changes detected in proteins involved in mitochondrial metabolism correlated with enhanced mitochondrial potential, shown using high-resolution respirometry. hiPSCs also produced higher levels of secreted proteins, including growth factors and proteins involved in the inhibition of the immune system. The data indicate that reprogramming of fibroblasts to hiPSCs produces important differences in cytoplasmic and mitochondrial proteins compared to hESCs, with consequences affecting growth and metabolism. This study improves our understanding of the molecular differences between hiPSCs and hESCs, with implications for potential risks and benefits for their use in future disease modelling and therapeutic applications.