1. Structural Biology and Molecular Biophysics
  2. Cell Biology
Download icon

Dilation of fusion pores by crowding of SNARE proteins

  1. Zhenyong Wu
  2. Oscar D Bello
  3. Sathish Thiyagarajan
  4. Sarah Marie Auclair
  5. Wensi Vennekate
  6. Shyam S Krishnakumar
  7. Ben O'Shaughnessy
  8. Erdem Karatekin  Is a corresponding author
  1. School of Medicine, Yale University, United States
  2. Yale University, United States
  3. Columbia University, United States
Research Article
  • Cited 27
  • Views 1,659
  • Annotations
Cite this article as: eLife 2017;6:e22964 doi: 10.7554/eLife.22964

Abstract

Hormones and neurotransmitters are released through fluctuating exocytotic fusion pores that can flicker open and shut multiple times. Cargo release and vesicle recycling depend on the fate of the pore, which may reseal or dilate irreversibly. Pore nucleation requires zippering between vesicle-associated v- and target membrane t-SNAREs, but the mechanisms governing the subsequent pore dilation are not understood. Here, we probed dilation of single fusion pores using v-SNARE-reconstituted ~23 nm diameter discoidal nanolipoprotein particles (vNLPs) as fusion partners with cells ectopically expressing cognate, 'flipped' t-SNAREs. Pore nucleation required a minimum of 2, and reached a maximum above ~4 copies per face, but the probability of pore dilation was far from saturating at 15 copies, the NLP capacity. Our experimental and computational results suggest SNARE availability may be pivotal in determining whether neurotransmitters or hormones are released through a transient (kiss & run) or an irreversibly dilating pore (full fusion).

Article and author information

Author details

  1. Zhenyong Wu

    Department of Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Oscar D Bello

    Nanobiology Institute, Yale University, West Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Sathish Thiyagarajan

    Department of Physics, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Sarah Marie Auclair

    Nanobiology Institute, Yale University, West Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Wensi Vennekate

    Department of Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Shyam S Krishnakumar

    Nanobiology Institute, Yale University, West Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6148-3251
  7. Ben O'Shaughnessy

    Department of Chemical Engineering, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Erdem Karatekin

    Department of Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, United States
    For correspondence
    erdem.karatekin@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5934-8728

Funding

National Institute of General Medical Sciences (R01GM108954)

  • Erdem Karatekin

Kavli Foundation (Neuroscience Scholar Award)

  • Erdem Karatekin

Deutsche Forschungsgemeinschaft (VE760/1-1)

  • Wensi Vennekate

National Institute of Diabetes and Digestive and Kidney Diseases (R01DK027044)

  • Shyam S Krishnakumar

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Axel T Brunger, Stanford University Medical Center, United States

Publication history

  1. Received: November 4, 2016
  2. Accepted: March 26, 2017
  3. Accepted Manuscript published: March 27, 2017 (version 1)
  4. Version of Record published: April 25, 2017 (version 2)

Copyright

© 2017, Wu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,659
    Page views
  • 483
    Downloads
  • 27
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    2. Structural Biology and Molecular Biophysics
    Carlos A Z Bassetto Jnr et al.
    Research Article

    In Shaker K+ channels, the S4-S5 linker couples the voltage sensor (VSD) and pore domain (PD). Another coupling mechanism is revealed using two W434F-containing channels: L361R:W434F and L366H:W434F. In L361R:W434F, W434F affects the L361R VSD seen as a shallower Q-V curve that crosses the G-V. In L366H:W434F, L366H relieves the W434F effect converting a non-conductive channel in a conductive one. We report a chain of residues connecting the VSD (S4) to the selectivity filter (SF) in the PD of an adjacent subunit as the molecular basis for voltage-sensor selectivity filter gate (VS-SF) coupling. Single alanine substitutions in this region (L409A, S411A, S412A or F433A) are enough to disrupt the VS-SF coupling, shown by the absence of Q-V and G-V crossing in L361R:W434F mutant and by the lack of ionic conduction in the L366H:W434F mutant. This residue chain defines a new coupling between the VSD and the PD in voltage-gated channels.

    1. Structural Biology and Molecular Biophysics
    Joseph W Nors et al.
    Research Article Updated

    Benzodiazepines (BZDs) are a class of widely prescribed psychotropic drugs that modulate activity of GABAA receptors (GABAARs), neurotransmitter-gated ion channels critical for synaptic transmission. However, the physical basis of this modulation is poorly understood. We explore the role of an important gating domain, the α1M2–M3 linker, in linkage between the BZD site and pore gate. To probe energetics of this coupling without complication from bound agonist, we use a gain of function mutant (α1L9'Tβ2γ2L) directly activated by BZDs. We identify a specific residue whose mutation (α1V279A) more than doubles the energetic contribution of the BZD positive modulator diazepam (DZ) to pore opening and also enhances DZ potentiation of GABA-evoked currents in a wild-type background. In contrast, other linker mutations have little effect on DZ efficiency, but generally impair unliganded pore opening. Our observations reveal an important residue regulating BZD-pore linkage, thereby shedding new light on the molecular mechanism of these drugs.