TAPBPR bridges UDP-glucose:glycoprotein glucosyltransferase 1 onto MHC class I to provide quality control in the antigen presentation pathway
Abstract
Recently we revealed that TAPBPR is a peptide exchange catalyst important for optimal peptide selection by MHC class I molecules. Here we asked if any other co-factors associate with TAPBPR which would explain its effect on peptide selection. We identify an interaction between TAPBPR and UDP-glucose:glycoprotein glucosyltransferase 1 (UGT1), a folding sensor in the calnexin/calreticulin quality control cycle known to regenerate the Glc1Man9GlcNAc2 moiety on glycoproteins. Our results suggest the formation of a multimeric complex, dependent on a conserved cysteine at position 94 in TAPBPR, in which TAPBPR promotes the association of UGT1 with peptide-receptive class I molecules. We reveal that the interaction between TAPBPR and UGT1 facilities the reglucosylation of the glycan on class I, promoting their recognition by calreticulin. Our results suggest that in addition to being a peptide-editor, TAPBPR improves peptide optimisation by promoting peptide-receptive MHC class I molecules to associate with the peptide-loading complex.
Data availability
-
Data from: TAPBPR bridges UDP-glucose:glycoprotein glucosyltransferase 1 onto MHC class I to provide quality controlAvailable at Dryad Digital Repository under a CC0 Public Domain Dedication.
Article and author information
Author details
Funding
Wellcome (Senior Research Fellowship 104647)
- Andreas Neerincx
- Louise H Boyle
Royal Society (University Research Fellowship,UF100371)
- Janet E Deane
Cancer Research UK (Programme Grant,C7056A)
- Andy van Hateren
- Tim Elliott
Deutsche Forschungsgemeinschaft (SFB 685)
- Nico Trautwein
- Stefan Stevanović
Wellcome (PhD studentship,089563)
- Clemens Hermann
Wellcome (Strategic Award 100140)
- Robin Antrobus
Wellcome (programme grant,WT094847MA)
- Huan Cao
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2017, Neerincx et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,617
- views
-
- 364
- downloads
-
- 56
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
Dynamic interactions between gut mucosal cells and the external environment are essential to maintain gut homeostasis. Enterochromaffin (EC) cells transduce both chemical and mechanical signals and produce 5-hydroxytryptamine to mediate disparate physiological responses. However, the molecular and cellular basis for functional diversity of ECs remains to be adequately defined. Here, we integrated single-cell transcriptomics with spatial image analysis to identify 14 EC clusters that are topographically organized along the gut. Subtypes predicted to be sensitive to the chemical environment and mechanical forces were identified that express distinct transcription factors and hormones. A Piezo2+ population in the distal colon was endowed with a distinctive neuronal signature. Using a combination of genetic, chemogenetic, and pharmacological approaches, we demonstrated Piezo2+ ECs are required for normal colon motility. Our study constructs a molecular map for ECs and offers a framework for deconvoluting EC cells with pleiotropic functions.
-
- Cell Biology
- Developmental Biology
A study in mice reveals key interactions between proteins involved in fibroblast growth factor signaling and how they contribute to distinct stages of eye lens development.