TAPBPR bridges UDP-glucose:glycoprotein glucosyltransferase 1 onto MHC class I to provide quality control in the antigen presentation pathway

  1. Andreas Neerincx
  2. Clemens Hermann
  3. Robin Antrobus
  4. Andy van Hateren
  5. Huan Cao
  6. Nico Trautwein
  7. Stefan Stevanović
  8. Tim Elliott
  9. Janet E Deane
  10. Louise H Boyle  Is a corresponding author
  1. University of Cambridge, United Kingdom
  2. University of Cape Town, South Africa
  3. University of Southampton, United Kingdom
  4. University of Aberdeen, United Kingdom
  5. Eberhard Karls University Tübingen, Germany

Abstract

Recently we revealed that TAPBPR is a peptide exchange catalyst important for optimal peptide selection by MHC class I molecules. Here we asked if any other co-factors associate with TAPBPR which would explain its effect on peptide selection. We identify an interaction between TAPBPR and UDP-glucose:glycoprotein glucosyltransferase 1 (UGT1), a folding sensor in the calnexin/calreticulin quality control cycle known to regenerate the Glc1Man9GlcNAc2 moiety on glycoproteins. Our results suggest the formation of a multimeric complex, dependent on a conserved cysteine at position 94 in TAPBPR, in which TAPBPR promotes the association of UGT1 with peptide-receptive class I molecules. We reveal that the interaction between TAPBPR and UGT1 facilities the reglucosylation of the glycan on class I, promoting their recognition by calreticulin. Our results suggest that in addition to being a peptide-editor, TAPBPR improves peptide optimisation by promoting peptide-receptive MHC class I molecules to associate with the peptide-loading complex.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Andreas Neerincx

    Department of Pathology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Clemens Hermann

    Department of Integrative Biomedical Sciences, Division of Chemical and Systems Biology, Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
    Competing interests
    The authors declare that no competing interests exist.
  3. Robin Antrobus

    Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Andy van Hateren

    Faculty of Medicine and Institute for Life Science, University of Southampton, Southampton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3915-0239
  5. Huan Cao

    Division of Applied Medicine, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Nico Trautwein

    Department of Immunology, Eberhard Karls University Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Stefan Stevanović

    Department of Immunology, Eberhard Karls University Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Tim Elliott

    Faculty of Medicine and Institute for Life Science, University of Southampton, Southampton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Janet E Deane

    Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4863-0330
  10. Louise H Boyle

    Department of Pathology, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    lhb22@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3105-6555

Funding

Wellcome (Senior Research Fellowship 104647)

  • Andreas Neerincx
  • Louise H Boyle

Royal Society (University Research Fellowship,UF100371)

  • Janet E Deane

Cancer Research UK (Programme Grant,C7056A)

  • Andy van Hateren
  • Tim Elliott

Deutsche Forschungsgemeinschaft (SFB 685)

  • Nico Trautwein
  • Stefan Stevanović

Wellcome (PhD studentship,089563)

  • Clemens Hermann

Wellcome (Strategic Award 100140)

  • Robin Antrobus

Wellcome (programme grant,WT094847MA)

  • Huan Cao

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Neerincx et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,601
    views
  • 363
    downloads
  • 56
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andreas Neerincx
  2. Clemens Hermann
  3. Robin Antrobus
  4. Andy van Hateren
  5. Huan Cao
  6. Nico Trautwein
  7. Stefan Stevanović
  8. Tim Elliott
  9. Janet E Deane
  10. Louise H Boyle
(2017)
TAPBPR bridges UDP-glucose:glycoprotein glucosyltransferase 1 onto MHC class I to provide quality control in the antigen presentation pathway
eLife 6:e23049.
https://doi.org/10.7554/eLife.23049

Share this article

https://doi.org/10.7554/eLife.23049

Further reading

    1. Cell Biology
    Zewei Zhao, Longyun Hu ... Zhonghan Yang
    Research Article

    The induction of adipose thermogenesis plays a critical role in maintaining body temperature and improving metabolic homeostasis to combat obesity. β3-adrenoceptor (β3-AR) is widely recognized as a canonical β-adrenergic G-protein-coupled receptor (GPCR) that plays a crucial role in mediating adipose thermogenesis in mice. Nonetheless, the limited expression of β3-AR in human adipocytes restricts its clinical application. The objective of this study was to identify a GPCR that is highly expressed in human adipocytes and to explore its potential involvement in adipose thermogenesis. Our research findings have demonstrated that the adhesion G-protein-coupled receptor A3 (ADGRA3), an orphan GPCR, plays a significant role in adipose thermogenesis through its constitutively active effects. ADGRA3 exhibited high expression levels in human adipocytes and mouse brown fat. Furthermore, the knockdown of Adgra3 resulted in an exacerbated obese phenotype and a reduction in the expression of thermogenic markers in mice. Conversely, Adgra3 overexpression activated the adipose thermogenic program and improved metabolic homeostasis in mice without exogenous ligand. We found that ADGRA3 facilitates the biogenesis of beige human or mouse adipocytes in vitro. Moreover, hesperetin was identified as a potential agonist of ADGRA3, capable of inducing adipocyte browning and ameliorating insulin resistance in mice. In conclusion, our study demonstrated that the overexpression of constitutively active ADGRA3 or the activation of ADGRA3 by hesperetin can induce adipocyte browning by Gs-PKA-CREB axis. These findings indicate that the utilization of hesperetin and the selective overexpression of ADGRA3 in adipose tissue could serve as promising therapeutic strategies in the fight against obesity.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bethany M Bartlett, Yatendra Kumar ... Wendy A Bickmore
    Research Article Updated

    During oncogene-induced senescence there are striking changes in the organisation of heterochromatin in the nucleus. This is accompanied by activation of a pro-inflammatory gene expression programme – the senescence-associated secretory phenotype (SASP) – driven by transcription factors such as NF-κB. The relationship between heterochromatin re-organisation and the SASP has been unclear. Here, we show that TPR, a protein of the nuclear pore complex basket required for heterochromatin re-organisation during senescence, is also required for the very early activation of NF-κB signalling during the stress-response phase of oncogene-induced senescence. This is prior to activation of the SASP and occurs without affecting NF-κB nuclear import. We show that TPR is required for the activation of innate immune signalling at these early stages of senescence and we link this to the formation of heterochromatin-enriched cytoplasmic chromatin fragments thought to bleb off from the nuclear periphery. We show that HMGA1 is also required for cytoplasmic chromatin fragment formation. Together these data suggest that re-organisation of heterochromatin is involved in altered structural integrity of the nuclear periphery during senescence, and that this can lead to activation of cytoplasmic nucleic acid sensing, NF-κB signalling, and activation of the SASP.