Modelling primaquine-induced haemolysis in G6PD deficiency

  1. James Watson  Is a corresponding author
  2. Walter RJ Taylor
  3. Didier Menard
  4. Sim Kheng
  5. Nicholas J White
  1. Mahidol University, Thailand
  2. Institut Pasteur du Cambodge, Cambodia
  3. National Center for Parasitology, Entomology and Malaria Control, Cambodia

Abstract

Primaquine is the only drug available to prevent relapse in vivax malaria. The main adverse effect of primaquine is erythrocyte age and dose dependent acute haemolytic anaemia in individuals with glucose-6-phosphate dehydrogenase deficiency (G6PDd). As testing for G6PDd is often unavailable this limits the use of primaquine for radical cure. A compartmental model of the dynamics of red blood cell production and destruction was designed to characterise primaquine-induced haemolysis using a holistic Bayesian analysis of all published data and was used to predict a safer alternative to the currently recommended once weekly 0.75mg/kg regimen for G6PDd. The model suggests that a step-wise increase in daily administered primaquine dose would be relatively safe in G6PDd. If this is confirmed then were this regimen to be recommended for radical cure patients would not require testing for G6PDd in areas where G6PD Viangchan or milder variants are prevalent.

Article and author information

Author details

  1. James Watson

    Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
    For correspondence
    jwatowatson@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5524-0325
  2. Walter RJ Taylor

    Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
    Competing interests
    The authors declare that no competing interests exist.
  3. Didier Menard

    Unité d'Epidémiologie Moléculaire du Paludisme, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1357-4495
  4. Sim Kheng

    National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
    Competing interests
    The authors declare that no competing interests exist.
  5. Nicholas J White

    Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1897-1978

Funding

Wellcome

  • James Watson
  • Walter RJ Taylor
  • Nicholas J White

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Watson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,857
    views
  • 324
    downloads
  • 41
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. James Watson
  2. Walter RJ Taylor
  3. Didier Menard
  4. Sim Kheng
  5. Nicholas J White
(2017)
Modelling primaquine-induced haemolysis in G6PD deficiency
eLife 6:e23061.
https://doi.org/10.7554/eLife.23061

Share this article

https://doi.org/10.7554/eLife.23061

Further reading

    1. Computational and Systems Biology
    2. Ecology
    Lenore Pipes, Rasmus Nielsen
    Tools and Resources

    Environmental DNA (eDNA) is becoming an increasingly important tool in diverse scientific fields from ecological biomonitoring to wastewater surveillance of viruses. The fundamental challenge in eDNA analyses has been the bioinformatical assignment of reads to taxonomic groups. It has long been known that full probabilistic methods for phylogenetic assignment are preferable, but unfortunately, such methods are computationally intensive and are typically inapplicable to modern Next-Generation Sequencing data. We here present a fast approximate likelihood method for phylogenetic assignment of DNA sequences. Applying the new method to several mock communities and simulated datasets, we show that it identifies more reads at both high and low taxonomic levels more accurately than other leading methods. The advantage of the method is particularly apparent in the presence of polymorphisms and/or sequencing errors and when the true species is not represented in the reference database.

    1. Computational and Systems Biology
    2. Physics of Living Systems
    Natanael Spisak, Gabriel Athènes ... Aleksandra M Walczak
    Tools and Resources

    B-cell repertoires are characterized by a diverse set of receptors of distinct specificities generated through two processes of somatic diversification: V(D)J recombination and somatic hypermutations. B cell clonal families stem from the same V(D)J recombination event, but differ in their hypermutations. Clonal families identification is key to understanding B-cell repertoire function, evolution and dynamics. We present HILARy (High-precision Inference of Lineages in Antibody Repertoires), an efficient, fast and precise method to identify clonal families from single- or paired-chain repertoire sequencing datasets. HILARy combines probabilistic models that capture the receptor generation and selection statistics with adapted clustering methods to achieve consistently high inference accuracy. It automatically leverages the phylogenetic signal of shared mutations in difficult repertoire subsets. Exploiting the high sensitivity of the method, we find the statistics of evolutionary properties such as the site frequency spectrum and 𝑑𝑁∕𝑑𝑆 ratio do not depend on the junction length. We also identify a broad range of selection pressures spanning two orders of magnitude.