Multiplex image-based autophagy RNAi screening identifies SMCR8 as ULK1 kinase activity and gene expression regulator

  1. Jennifer Jung
  2. Arnab Nayak
  3. Véronique Schaeffer
  4. Tatjana Starzetz
  5. Achim Klaus Kirsch
  6. Stefan Müller
  7. Ivan Dikic
  8. Michel Mittelbronn
  9. Christian Behrends  Is a corresponding author
  1. Goethe University School of Medicine, Germany
  2. Goethe University, Germany
  3. PerkinElmer, Inc., Germany

Abstract

Autophagy is an intracellular recycling and degradation pathway that depends on membrane trafficking. Rab GTPases are central for autophagy but their regulation especially through the activity of Rab GEFs remains largely elusive. We employed a RNAi screen simultaneously monitoring different populations of autophagosomes and identified 34 out of 186 Rab GTPase, GAP and GEF family members as potential autophagy regulators, amongst them SMCR8. SMCR8 uses overlapping binding regions to associate with C9ORF72 or with a C9ORF72-ULK1 kinase complex holo-assembly, which function in maturation and formation of autophagosomes, respectively. While focusing on the role of SMCR8 during autophagy initiation, we found that kinase activity and gene expression of ULK1 are increased upon SMCR8 depletion. The latter phenotype involved association of SMCR8 with the ULK1 gene locus. Global mRNA expression analysis revealed that SMCR8 regulates transcription of several other autophagy genes including WIPI2. Collectively, we established SMCR8 as multifaceted negative autophagy regulator.

Article and author information

Author details

  1. Jennifer Jung

    Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9436-4021
  2. Arnab Nayak

    Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt, Germany
    Competing interests
    No competing interests declared.
  3. Véronique Schaeffer

    Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt, Germany
    Competing interests
    No competing interests declared.
  4. Tatjana Starzetz

    Neurological Institute, Goethe University, Frankfurt, Germany
    Competing interests
    No competing interests declared.
  5. Achim Klaus Kirsch

    PerkinElmer, Inc., Hamburg, Germany
    Competing interests
    No competing interests declared.
  6. Stefan Müller

    Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt, Germany
    Competing interests
    No competing interests declared.
  7. Ivan Dikic

    Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt, Germany
    Competing interests
    Ivan Dikic, Senior Editor eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8156-9511
  8. Michel Mittelbronn

    Neurological Institute, Goethe University, Frankfurt, Germany
    Competing interests
    No competing interests declared.
  9. Christian Behrends

    Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt, Germany
    For correspondence
    behrends@em.uni-frankfurt.de
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9184-7607

Funding

Deutsche Forschungsgemeinschaft (SFB1177)

  • Stefan Müller
  • Ivan Dikic
  • Christian Behrends

Munich Cluster of Systems Neurology (EXC 1010 SyNergy)

  • Christian Behrends

Goethe-Universität Frankfurt am Main (EXC115)

  • Ivan Dikic

LOEWE Zentrum (Ub-net)

  • Stefan Müller
  • Ivan Dikic
  • Christian Behrends

European Research Council (ERC,282333-XABA)

  • Christian Behrends

Deutsche Forschungsgemeinschaft (DI 931/3-1)

  • Ivan Dikic

LOEWE Zentrum (Gene and Cell Therapy Frankfurt)

  • Christian Behrends

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Noboru Mizushima, The University of Tokyo, Japan

Version history

  1. Received: November 7, 2016
  2. Accepted: February 13, 2017
  3. Accepted Manuscript published: February 14, 2017 (version 1)
  4. Version of Record published: February 23, 2017 (version 2)
  5. Version of Record updated: September 13, 2017 (version 3)

Copyright

© 2017, Jung et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,729
    views
  • 905
    downloads
  • 67
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jennifer Jung
  2. Arnab Nayak
  3. Véronique Schaeffer
  4. Tatjana Starzetz
  5. Achim Klaus Kirsch
  6. Stefan Müller
  7. Ivan Dikic
  8. Michel Mittelbronn
  9. Christian Behrends
(2017)
Multiplex image-based autophagy RNAi screening identifies SMCR8 as ULK1 kinase activity and gene expression regulator
eLife 6:e23063.
https://doi.org/10.7554/eLife.23063

Share this article

https://doi.org/10.7554/eLife.23063

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Isabelle Petit-Hartlein, Annelise Vermot ... Franck Fieschi
    Research Article

    NADPH oxidases (NOX) are transmembrane proteins, widely spread in eukaryotes and prokaryotes, that produce reactive oxygen species (ROS). Eukaryotes use the ROS products for innate immune defense and signaling in critical (patho)physiological processes. Despite the recent structures of human NOX isoforms, the activation of electron transfer remains incompletely understood. SpNOX, a homolog from Streptococcus pneumoniae, can serves as a robust model for exploring electron transfers in the NOX family thanks to its constitutive activity. Crystal structures of SpNOX full-length and dehydrogenase (DH) domain constructs are revealed here. The isolated DH domain acts as a flavin reductase, and both constructs use either NADPH or NADH as substrate. Our findings suggest that hydride transfer from NAD(P)H to FAD is the rate-limiting step in electron transfer. We identify significance of F397 in nicotinamide access to flavin isoalloxazine and confirm flavin binding contributions from both DH and Transmembrane (TM) domains. Comparison with related enzymes suggests that distal access to heme may influence the final electron acceptor, while the relative position of DH and TM does not necessarily correlate with activity, contrary to previous suggestions. It rather suggests requirement of an internal rearrangement, within the DH domain, to switch from a resting to an active state. Thus, SpNOX appears to be a good model of active NOX2, which allows us to propose an explanation for NOX2’s requirement for activation.