1. Structural Biology and Molecular Biophysics
  2. Cell Biology
Download icon

CatSperζ regulates the structural continuity of sperm Ca2+ signaling domains and is required for normal fertility

  1. Jean-Ju Chung  Is a corresponding author
  2. Kiyoshi Miki
  3. Doory Kim
  4. Sang-Hee Shim
  5. Huanan F Shi
  6. Jae Yeon Hwang
  7. Xinjiang Cai
  8. Yusuf Iseri
  9. Xiaowei Zhuang
  10. David E Clapham  Is a corresponding author
  1. Yale School of Medicine, United States
  2. Howard Hughes Medical Institute, Boston Children's Hospital, United States
  3. Howard Hughes Medical Institute, Harvard University, United States
  4. Ichan School of Medicine at Mount Sinai, United States
Research Article
  • Cited 78
  • Views 4,263
  • Annotations
Cite this article as: eLife 2017;6:e23082 doi: 10.7554/eLife.23082

Abstract

We report that the Gm7068 (CatSperε) and Tex40 (CatSperζ) genes encode novel subunits of a 9-subunit CatSper ion channel complex. Targeted disruption of CatSperζ reduces CatSper current and sperm rheotactic efficiency in mice, resulting in severe male subfertility. Normally distributed in linear quadrilateral nanodomains along the flagellum, the complex lacking CatSperζ is disrupted at ~0.8 μm intervals along the flagellum. This disruption renders the proximal flagellum inflexible and alters the 3D flagellar envelope, thus preventing sperm from reorienting against fluid flow in vitro and efficiently migrating in vivo. Ejaculated CatSperζ-null sperm cells retrieved from the mated female uterus partially rescue in vitro fertilization (IVF) that failed with epididymal spermatozoa alone. Human CatSperε is quadrilaterally arranged along the flagella, similar to the CatSper complex in mouse sperm. We speculate that the newly identified CatSperζ subunit is a late evolutionary adaptation to maximize fertilization inside the mammalian female reproductive tract.

Article and author information

Author details

  1. Jean-Ju Chung

    Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, United States
    For correspondence
    jean-ju.chung@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8018-1355
  2. Kiyoshi Miki

    Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Doory Kim

    Department of Chemistry and Chemical Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Sang-Hee Shim

    Department of Chemistry and Chemical Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Huanan F Shi

    Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3710-5917
  6. Jae Yeon Hwang

    Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Xinjiang Cai

    Department of Medicine, Ichan School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8933-7133
  8. Yusuf Iseri

    Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Xiaowei Zhuang

    Department of Chemistry and Chemical Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6034-7853
  10. David E Clapham

    Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States
    For correspondence
    dclapham@enders.tch.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4459-9428

Funding

Howard Hughes Medical Institute

  • Xiaowei Zhuang
  • David E Clapham

Yale School of Medicine (Goodman-Gilman Yale Scholar Award 2015-08)

  • Jean-Ju Chung

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All the mice were treated in accordance with guidelines approved by the Boston Children's Hospital (13-01-2341R) and Yale (2015-20079) Animal Care and Use Committees (IACUC).

Reviewing Editor

  1. Kenton J Swartz, National Institutes of Health, United States

Publication history

  1. Received: November 8, 2016
  2. Accepted: February 20, 2017
  3. Accepted Manuscript published: February 22, 2017 (version 1)
  4. Accepted Manuscript updated: February 23, 2017 (version 2)
  5. Version of Record published: March 22, 2017 (version 3)

Copyright

© 2017, Chung et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,263
    Page views
  • 896
    Downloads
  • 78
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Lan Wang et al.
    Research Advance

    The mitochondrial AAA protein ATAD1 (in humans; Msp1 in yeast) removes mislocalized membrane proteins, as well as stuck import substrates from the mitochondrial outer membrane, facilitating their re-insertion into their cognate organelles and maintaining mitochondria's protein import capacity. In doing so, it helps to maintain proteostasis in mitochondria. How ATAD1 tackles the energetic challenge to extract hydrophobic membrane proteins from the lipid bilayer and what structural features adapt ATAD1 for its particular function has remained a mystery. Previously, we determined the structure of Msp1 in complex with a peptide substrate (Wang et al., 2020). The structure showed that Msp1's mechanism follows the general principle established for AAA proteins while adopting several structural features that specialize it for its function. Among these features in Msp1 was the utilization of multiple aromatic amino acids to firmly grip the substrate in the central pore. However, it was not clear whether the aromatic nature of these amino acids were required, or if they could be functionally replaced by aliphatic amino acids. In this work, we determined the cryo-EM structures of the human ATAD1 in complex with a peptide substrate at near atomic resolution. The structures show that phylogenetically conserved structural elements adapt ATAD1 for its function while generally adopting a conserved mechanism shared by many AAA proteins. We developed a microscopy-based assay reporting on protein mislocalization, with which we directly assessed ATAD1's activity in live cells and showed that both aromatic amino acids in pore-loop 1 are required for ATAD1’s function and cannot be substituted by aliphatic amino acids. A short α-helix at the C-terminus strongly facilitates ATAD1's oligomerization, a structural feature that distinguishes ATAD1 from its closely related proteins.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Nazia Ahmad et al.
    Research Article Updated

    L,D-transpeptidase function predominates in atypical 3 → 3 transpeptide networking of peptidoglycan (PG) layer in Mycobacterium tuberculosis. Prior studies of L,D-transpeptidases have identified only the catalytic site that binds to peptide moiety of the PG substrate or β-lactam antibiotics. This insight was leveraged to develop mechanism of its activity and inhibition by β-lactams. Here, we report identification of an allosteric site at a distance of 21 Å from the catalytic site that binds the sugar moiety of PG substrates (hereafter referred to as the S-pocket). This site also binds a second β-lactam molecule and influences binding at the catalytic site. We provide evidence that two β-lactam molecules bind co-operatively to this enzyme, one non-covalently at the S-pocket and one covalently at the catalytic site. This dual β-lactam-binding phenomenon is previously unknown and is an observation that may offer novel approaches for the structure-based design of new drugs against M. tuberculosis.