Measuring the sequence-affinity landscape of antibodies with massively parallel titration curves

  1. Rhys M Adams
  2. Thierry Mora  Is a corresponding author
  3. Aleksandra M Walczak
  4. Justin B Kinney
  1. École Normale Supérieure, France
  2. Cold Spring Harbor Laboratory, United States

Abstract

Despite the central role that antibodies play in the adaptive immune system and in biotechnology, much remains unknown about the quantitative relationship between an antibody's amino acid sequence and its antigen binding affinity. Here we describe a new experimental approach, called Tite-Seq, that is capable of measuring binding titration curves and corresponding affinities for thousands of variant antibodies in parallel. The measurement of titration curves eliminates the confounding effects of antibody expression and stability that arise in standard deep mutational scanning assays. We demonstrate Tite-Seq on the CDR1H and CDR3H regions of a well-studied scFv antibody. Our data shed light on the structural basis for antigen binding affinity and suggests a role for secondary CDR loops in establishing antibody stability. Tite-Seq fills a large gap in the ability to measure critical aspects of the adaptive immune system, and can be readily used for studying sequence-affinity landscapes in other protein systems.

Data availability

The following data sets were generated
    1. Adams RM
    2. Kinney JB
    3. Mora T
    4. Walczak AM
    (2016) Saccharomyces cerevisiae high-throughput titration curves
    Publicly available at the NCBI BioProject database (accession no: PRJNA344711).

Article and author information

Author details

  1. Rhys M Adams

    Laboratoire de Physique Théorique, École Normale Supérieure, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Thierry Mora

    Laboratoire de Physique Statistique, École Normale Supérieure, Paris, France
    For correspondence
    tmora@lps.ens.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5456-9361
  3. Aleksandra M Walczak

    Laboratoire de Physique Théorique, École Normale Supérieure, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2686-5702
  4. Justin B Kinney

    Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

European Research Council (StG n. 306312)

  • Rhys M Adams
  • Thierry Mora
  • Aleksandra M Walczak

Simons Center for Quantitative Biology

  • Justin B Kinney

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Adams et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,757
    views
  • 1,361
    downloads
  • 110
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rhys M Adams
  2. Thierry Mora
  3. Aleksandra M Walczak
  4. Justin B Kinney
(2016)
Measuring the sequence-affinity landscape of antibodies with massively parallel titration curves
eLife 5:e23156.
https://doi.org/10.7554/eLife.23156

Share this article

https://doi.org/10.7554/eLife.23156