Measuring the sequence-affinity landscape of antibodies with massively parallel titration curves

  1. Rhys M Adams
  2. Thierry Mora  Is a corresponding author
  3. Aleksandra M Walczak
  4. Justin B Kinney
  1. École Normale Supérieure, France
  2. Cold Spring Harbor Laboratory, United States

Abstract

Despite the central role that antibodies play in the adaptive immune system and in biotechnology, much remains unknown about the quantitative relationship between an antibody's amino acid sequence and its antigen binding affinity. Here we describe a new experimental approach, called Tite-Seq, that is capable of measuring binding titration curves and corresponding affinities for thousands of variant antibodies in parallel. The measurement of titration curves eliminates the confounding effects of antibody expression and stability that arise in standard deep mutational scanning assays. We demonstrate Tite-Seq on the CDR1H and CDR3H regions of a well-studied scFv antibody. Our data shed light on the structural basis for antigen binding affinity and suggests a role for secondary CDR loops in establishing antibody stability. Tite-Seq fills a large gap in the ability to measure critical aspects of the adaptive immune system, and can be readily used for studying sequence-affinity landscapes in other protein systems.

Data availability

The following data sets were generated
    1. Adams RM
    2. Kinney JB
    3. Mora T
    4. Walczak AM
    (2016) Saccharomyces cerevisiae high-throughput titration curves
    Publicly available at the NCBI BioProject database (accession no: PRJNA344711).

Article and author information

Author details

  1. Rhys M Adams

    Laboratoire de Physique Théorique, École Normale Supérieure, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Thierry Mora

    Laboratoire de Physique Statistique, École Normale Supérieure, Paris, France
    For correspondence
    tmora@lps.ens.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5456-9361
  3. Aleksandra M Walczak

    Laboratoire de Physique Théorique, École Normale Supérieure, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2686-5702
  4. Justin B Kinney

    Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

European Research Council (StG n. 306312)

  • Rhys M Adams
  • Thierry Mora
  • Aleksandra M Walczak

Simons Center for Quantitative Biology

  • Justin B Kinney

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jesse D Bloom, Fred Hutchinson Cancer Research Center, United States

Version history

  1. Received: November 10, 2016
  2. Accepted: December 27, 2016
  3. Accepted Manuscript published: December 30, 2016 (version 1)
  4. Accepted Manuscript updated: January 3, 2017 (version 2)
  5. Version of Record published: January 26, 2017 (version 3)

Copyright

© 2016, Adams et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,888
    views
  • 1,186
    downloads
  • 94
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rhys M Adams
  2. Thierry Mora
  3. Aleksandra M Walczak
  4. Justin B Kinney
(2016)
Measuring the sequence-affinity landscape of antibodies with massively parallel titration curves
eLife 5:e23156.
https://doi.org/10.7554/eLife.23156

Share this article

https://doi.org/10.7554/eLife.23156

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Damien M Rasmussen, Manny M Semonis ... Nicholas M Levinson
    Research Article

    The type II class of RAF inhibitors currently in clinical trials paradoxically activate BRAF at subsaturating concentrations. Activation is mediated by induction of BRAF dimers, but why activation rather than inhibition occurs remains unclear. Using biophysical methods tracking BRAF dimerization and conformation, we built an allosteric model of inhibitor-induced dimerization that resolves the allosteric contributions of inhibitor binding to the two active sites of the dimer, revealing key differences between type I and type II RAF inhibitors. For type II inhibitors the allosteric coupling between inhibitor binding and BRAF dimerization is distributed asymmetrically across the two dimer binding sites, with binding to the first site dominating the allostery. This asymmetry results in efficient and selective induction of dimers with one inhibited and one catalytically active subunit. Our allosteric models quantitatively account for paradoxical activation data measured for 11 RAF inhibitors. Unlike type II inhibitors, type I inhibitors lack allosteric asymmetry and do not activate BRAF homodimers. Finally, NMR data reveal that BRAF homodimers are dynamically asymmetric with only one of the subunits locked in the active αC-in state. This provides a structural mechanism for how binding of only a single αC-in inhibitor molecule can induce potent BRAF dimerization and activation.

    1. Structural Biology and Molecular Biophysics
    Nicholas James Ose, Paul Campitelli ... Sefika Banu Ozkan
    Research Article

    We integrate evolutionary predictions based on the neutral theory of molecular evolution with protein dynamics to generate mechanistic insight into the molecular adaptations of the SARS-COV-2 spike (S) protein. With this approach, we first identified candidate adaptive polymorphisms (CAPs) of the SARS-CoV-2 S protein and assessed the impact of these CAPs through dynamics analysis. Not only have we found that CAPs frequently overlap with well-known functional sites, but also, using several different dynamics-based metrics, we reveal the critical allosteric interplay between SARS-CoV-2 CAPs and the S protein binding sites with the human ACE2 (hACE2) protein. CAPs interact far differently with the hACE2 binding site residues in the open conformation of the S protein compared to the closed form. In particular, the CAP sites control the dynamics of binding residues in the open state, suggesting an allosteric control of hACE2 binding. We also explored the characteristic mutations of different SARS-CoV-2 strains to find dynamic hallmarks and potential effects of future mutations. Our analyses reveal that Delta strain-specific variants have non-additive (i.e., epistatic) interactions with CAP sites, whereas the less pathogenic Omicron strains have mostly additive mutations. Finally, our dynamics-based analysis suggests that the novel mutations observed in the Omicron strain epistatically interact with the CAP sites to help escape antibody binding.