Measuring the sequence-affinity landscape of antibodies with massively parallel titration curves

  1. Rhys M Adams
  2. Thierry Mora  Is a corresponding author
  3. Aleksandra M Walczak  Is a corresponding author
  4. Justin B Kinney  Is a corresponding author
  1. École Normale Supérieure, France
  2. Cold Spring Harbor Laboratory, United States

Abstract

Despite the central role that antibodies play in the adaptive immune system and in biotechnology, much remains unknown about the quantitative relationship between an antibody's amino acid sequence and its antigen binding affinity. Here we describe a new experimental approach, called Tite-Seq, that is capable of measuring binding titration curves and corresponding affinities for thousands of variant antibodies in parallel. The measurement of titration curves eliminates the confounding effects of antibody expression and stability that arise in standard deep mutational scanning assays. We demonstrate Tite-Seq on the CDR1H and CDR3H regions of a well-studied scFv antibody. Our data shed light on the structural basis for antigen binding affinity and suggests a role for secondary CDR loops in establishing antibody stability. Tite-Seq fills a large gap in the ability to measure critical aspects of the adaptive immune system, and can be readily used for studying sequence-affinity landscapes in other protein systems.

Data availability

The following data sets were generated
    1. Adams RM
    2. Kinney JB
    3. Mora T
    4. Walczak AM
    (2016) Saccharomyces cerevisiae high-throughput titration curves
    Publicly available at the NCBI BioProject database (accession no: PRJNA344711).

Article and author information

Author details

  1. Rhys M Adams

    Laboratoire de Physique Théorique, École Normale Supérieure, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Thierry Mora

    Laboratoire de Physique Statistique, École Normale Supérieure, Paris, France
    For correspondence
    tmora@lps.ens.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5456-9361
  3. Aleksandra M Walczak

    Laboratoire de Physique Théorique, École Normale Supérieure, Paris, France
    For correspondence
    awalczak@lpt.ens.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2686-5702
  4. Justin B Kinney

    Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    For correspondence
    jkinney@cshl.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

European Research Council (StG n. 306312)

  • Rhys M Adams
  • Thierry Mora
  • Aleksandra M Walczak

Simons Center for Quantitative Biology

  • Justin B Kinney

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jesse D Bloom, Fred Hutchinson Cancer Research Center, United States

Version history

  1. Received: November 10, 2016
  2. Accepted: December 27, 2016
  3. Accepted Manuscript published: December 30, 2016 (version 1)
  4. Accepted Manuscript updated: January 3, 2017 (version 2)
  5. Version of Record published: January 26, 2017 (version 3)

Copyright

© 2016, Adams et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,717
    Page views
  • 1,173
    Downloads
  • 72
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rhys M Adams
  2. Thierry Mora
  3. Aleksandra M Walczak
  4. Justin B Kinney
(2016)
Measuring the sequence-affinity landscape of antibodies with massively parallel titration curves
eLife 5:e23156.
https://doi.org/10.7554/eLife.23156

Share this article

https://doi.org/10.7554/eLife.23156

Further reading

    1. Structural Biology and Molecular Biophysics
    Sebastian Jojoa-Cruz, Adrienne E Dubin ... Andrew B Ward
    Research Advance

    The dimeric two-pore OSCA/TMEM63 family has recently been identified as mechanically activated ion channels. Previously, based on the unique features of the structure of OSCA1.2, we postulated the potential involvement of several structural elements in sensing membrane tension (Jojoa-Cruz et al., 2018). Interestingly, while OSCA1, 2, and 3 clades are activated by membrane stretch in cell-attached patches (i.e. they are stretch-activated channels), they differ in their ability to transduce membrane deformation induced by a blunt probe (poking). Here, in an effort to understand the domains contributing to mechanical signal transduction, we used cryo-electron microscopy to solve the structure of Arabidopsis thaliana (At) OSCA3.1, which, unlike AtOSCA1.2, only produced stretch- but not poke-activated currents in our initial characterization (Murthy et al., 2018). Mutagenesis and electrophysiological assessment of conserved and divergent putative mechanosensitive features of OSCA1.2 reveal a selective disruption of the macroscopic currents elicited by poking without considerable effects on stretch-activated currents (SAC). Our results support the involvement of the amphipathic helix and lipid-interacting residues in the membrane fenestration in the response to poking. Our findings position these two structural elements as potential sources of functional diversity within the family.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Tien M Phan, Young C Kim ... Jeetain Mittal
    Research Article

    The heterochromatin protein 1 (HP1) family is a crucial component of heterochromatin with diverse functions in gene regulation, cell cycle control, and cell differentiation. In humans, there are three paralogs, HP1α, HP1β, and HP1γ, which exhibit remarkable similarities in their domain architecture and sequence properties. Nevertheless, these paralogs display distinct behaviors in liquid-liquid phase separation (LLPS), a process linked to heterochromatin formation. Here, we employ a coarse-grained simulation framework to uncover the sequence features responsible for the observed differences in LLPS. We highlight the significance of the net charge and charge patterning along the sequence in governing paralog LLPS propensities. We also show that both highly conserved folded and less-conserved disordered domains contribute to the observed differences. Furthermore, we explore the potential co-localization of different HP1 paralogs in multicomponent assemblies and the impact of DNA on this process. Importantly, our study reveals that DNA can significantly reshape the stability of a minimal condensate formed by HP1 paralogs due to competitive interactions of HP1α with HP1β and HP1γ versus DNA. In conclusion, our work highlights the physicochemical nature of interactions that govern the distinct phase-separation behaviors of HP1 paralogs and provides a molecular framework for understanding their role in chromatin organization.