Measuring the sequence-affinity landscape of antibodies with massively parallel titration curves

  1. Rhys M Adams
  2. Thierry Mora  Is a corresponding author
  3. Aleksandra M Walczak  Is a corresponding author
  4. Justin B Kinney  Is a corresponding author
  1. École Normale Supérieure, France
  2. Cold Spring Harbor Laboratory, United States

Abstract

Despite the central role that antibodies play in the adaptive immune system and in biotechnology, much remains unknown about the quantitative relationship between an antibody's amino acid sequence and its antigen binding affinity. Here we describe a new experimental approach, called Tite-Seq, that is capable of measuring binding titration curves and corresponding affinities for thousands of variant antibodies in parallel. The measurement of titration curves eliminates the confounding effects of antibody expression and stability that arise in standard deep mutational scanning assays. We demonstrate Tite-Seq on the CDR1H and CDR3H regions of a well-studied scFv antibody. Our data shed light on the structural basis for antigen binding affinity and suggests a role for secondary CDR loops in establishing antibody stability. Tite-Seq fills a large gap in the ability to measure critical aspects of the adaptive immune system, and can be readily used for studying sequence-affinity landscapes in other protein systems.

Data availability

The following data sets were generated
    1. Adams RM
    2. Kinney JB
    3. Mora T
    4. Walczak AM
    (2016) Saccharomyces cerevisiae high-throughput titration curves
    Publicly available at the NCBI BioProject database (accession no: PRJNA344711).

Article and author information

Author details

  1. Rhys M Adams

    Laboratoire de Physique Théorique, École Normale Supérieure, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Thierry Mora

    Laboratoire de Physique Statistique, École Normale Supérieure, Paris, France
    For correspondence
    tmora@lps.ens.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5456-9361
  3. Aleksandra M Walczak

    Laboratoire de Physique Théorique, École Normale Supérieure, Paris, France
    For correspondence
    awalczak@lpt.ens.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2686-5702
  4. Justin B Kinney

    Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    For correspondence
    jkinney@cshl.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

European Research Council (StG n. 306312)

  • Rhys M Adams
  • Thierry Mora
  • Aleksandra M Walczak

Simons Center for Quantitative Biology

  • Justin B Kinney

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jesse D Bloom, Fred Hutchinson Cancer Research Center, United States

Version history

  1. Received: November 10, 2016
  2. Accepted: December 27, 2016
  3. Accepted Manuscript published: December 30, 2016 (version 1)
  4. Accepted Manuscript updated: January 3, 2017 (version 2)
  5. Version of Record published: January 26, 2017 (version 3)

Copyright

© 2016, Adams et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,743
    views
  • 1,176
    downloads
  • 92
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rhys M Adams
  2. Thierry Mora
  3. Aleksandra M Walczak
  4. Justin B Kinney
(2016)
Measuring the sequence-affinity landscape of antibodies with massively parallel titration curves
eLife 5:e23156.
https://doi.org/10.7554/eLife.23156

Share this article

https://doi.org/10.7554/eLife.23156

Further reading

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Marcel Proske, Robert Janowski ... Dierk Niessing
    Research Article

    Mutations in the human PURA gene cause the neurodevelopmental PURA syndrome. In contrast to several other monogenetic disorders, almost all reported mutations in this nucleic acid-binding protein result in the full disease penetrance. In this study, we observed that patient mutations across PURA impair its previously reported co-localization with processing bodies. These mutations either destroyed the folding integrity, RNA binding, or dimerization of PURA. We also solved the crystal structures of the N- and C-terminal PUR domains of human PURA and combined them with molecular dynamics simulations and nuclear magnetic resonance measurements. The observed unusually high dynamics and structural promiscuity of PURA indicated that this protein is particularly susceptible to mutations impairing its structural integrity. It offers an explanation why even conservative mutations across PURA result in the full penetrance of symptoms in patients with PURA syndrome.

    1. Structural Biology and Molecular Biophysics
    Colin H Peters, Rohit K Singh ... John R Bankston
    Research Article

    Lymphoid restricted membrane protein (LRMP) is a specific regulator of the hyperpolarization-activated cyclic nucleotide-sensitive isoform 4 (HCN4) channel. LRMP prevents cAMP-dependent potentiation of HCN4, but the interaction domains, mechanisms of action, and basis for isoform-specificity remain unknown. Here, we identify the domains of LRMP essential for this regulation, show that LRMP acts by disrupting the intramolecular signal transduction between cyclic nucleotide binding and gating, and demonstrate that multiple unique regions in HCN4 are required for LRMP isoform-specificity. Using patch clamp electrophysiology and Förster resonance energy transfer (FRET), we identified the initial 227 residues of LRMP and the N-terminus of HCN4 as necessary for LRMP to associate with HCN4. We found that the HCN4 N-terminus and HCN4-specific residues in the C-linker are necessary for regulation of HCN4 by LRMP. Finally, we demonstrated that LRMP-regulation can be conferred to HCN2 by addition of the HCN4 N-terminus along with mutation of five residues in the S5 region and C-linker to the cognate HCN4 residues. Taken together, these results suggest that LRMP inhibits HCN4 through an isoform-specific interaction involving the N-terminals of both proteins that prevents the transduction of cAMP binding into a change in channel gating, most likely via an HCN4-specific orientation of the N-terminus, C-linker, and S4-S5 linker.