TCF7L1 promotes skin tumorigenesis independently of β-catenin through induction of LCN2

  1. Amy T Ku
  2. Timothy M Shaver
  3. Ajay S Rao
  4. Jeffrey M Howard
  5. Christine N Rodriguez
  6. Qi Miao
  7. Gloria Garcia
  8. Diep Le
  9. Diane Yang
  10. Malgorzata Borowiak
  11. Daniel N Cohen
  12. Vida Chitsazzadeh
  13. Abdul H Diwan
  14. Kenneth Y Tsai
  15. Hoang Nguyen  Is a corresponding author
  1. Baylor College of Medicine, United States
  2. University of Texas MD Anderson Cancer Center, United States
  3. Moffitt Cancer Center, United States

Abstract

The transcription factor TCF7L1 is an embryonic stem cell signature gene that is upregulated in multiple aggressive cancer types, but its role in skin tumorigenesis has not yet been defined. Here we document TCF7L1 upregulation in skin squamous cell carcinoma (SCC) and demonstrate that TCF7L1 overexpression increases tumor incidence, tumor multiplicity, and malignant progression in the chemically induced mouse model of skin SCC. Additionally, we show that downregulation of TCF7L1 and its paralogue TCF7L2 reduces tumor growth in a xenograft model of human skin SCC. Using separation-of-function mutants, we show that TCF7L1 promotes tumor growth, enhances cell migration, and overrides oncogenic RAS-induced senescence independently of its interaction with β-catenin. Through transcriptome profiling and combined gain- and loss-of-function studies, we identified LCN2 as a major downstream effector of TCF7L1 that drives tumor growth. Our findings establish a tumor-promoting role for TCF7L1 in skin and elucidate the mechanisms underlying its tumorigenic capacity.

Article and author information

Author details

  1. Amy T Ku

    Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Timothy M Shaver

    Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ajay S Rao

    Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jeffrey M Howard

    Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Christine N Rodriguez

    Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Qi Miao

    Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Gloria Garcia

    Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Diep Le

    Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Diane Yang

    Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Malgorzata Borowiak

    Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Daniel N Cohen

    Department of Pathology and Immunology, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Vida Chitsazzadeh

    Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Abdul H Diwan

    Department of Dermatology, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Kenneth Y Tsai

    Anatomic Pathology and Tumor Biology, Moffitt Cancer Center, Tampa, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Hoang Nguyen

    Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, United States
    For correspondence
    hoangn@bcm.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1091-7483

Funding

Cancer Prevention and Research Institute of Texas (RP110153)

  • Hoang Nguyen

Cancer Prevention and Research Institute of Texas (RP101499)

  • Jeffrey M Howard

National Institutes of Health (T32-HL092332-07)

  • Jeffrey M Howard

National Institutes of Health (T32HL92332)

  • Amy T Ku

National Institutes of Health (T32GM088129)

  • Amy T Ku

National Institutes of Health (7R01CA194617)

  • Kenneth Y Tsai

National Institutes of Health (R01 CA194062)

  • Kenneth Y Tsai

T . Boone Pickens Endowment

  • Kenneth Y Tsai

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Valerie Horsley, Yale University, United States

Ethics

Animal experimentation: All mice were maintained in the AALAC-accredited animal facilities at Baylor College of Medicine and MD Anderson and all mouse experiments were conducted according to protocols approved by committees at Baylor College of Medicine (AN-4907) and MD Anderson (ACUF00001396-RN00).

Version history

  1. Received: November 12, 2016
  2. Accepted: April 29, 2017
  3. Accepted Manuscript published: May 3, 2017 (version 1)
  4. Version of Record published: May 19, 2017 (version 2)

Copyright

© 2017, Ku et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,694
    views
  • 369
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Amy T Ku
  2. Timothy M Shaver
  3. Ajay S Rao
  4. Jeffrey M Howard
  5. Christine N Rodriguez
  6. Qi Miao
  7. Gloria Garcia
  8. Diep Le
  9. Diane Yang
  10. Malgorzata Borowiak
  11. Daniel N Cohen
  12. Vida Chitsazzadeh
  13. Abdul H Diwan
  14. Kenneth Y Tsai
  15. Hoang Nguyen
(2017)
TCF7L1 promotes skin tumorigenesis independently of β-catenin through induction of LCN2
eLife 6:e23242.
https://doi.org/10.7554/eLife.23242

Share this article

https://doi.org/10.7554/eLife.23242

Further reading

    1. Cancer Biology
    Chenxi Gao, Huaibin Ge ... Jing Hu
    Research Article

    BRAFV600E mutation is a driver mutation in the serrated pathway to colorectal cancers. BRAFV600E drives tumorigenesis through constitutive downstream extracellular signal-regulated kinase (ERK) activation, but high-intensity ERK activation can also trigger tumor suppression. Whether and how oncogenic ERK signaling can be intrinsically adjusted to a ‘just-right’ level optimal for tumorigenesis remains undetermined. In this study, we found that FAK (Focal adhesion kinase) expression was reduced in BRAFV600E-mutant adenomas/polyps in mice and patients. In Vil1-Cre;BRAFLSL-V600E/+;Ptk2fl/fl mice, Fak deletion maximized BRAFV600E’s oncogenic activity and increased cecal tumor incidence to 100%. Mechanistically, our results showed that Fak loss, without jeopardizing BRAFV600E-induced ERK pathway transcriptional output, reduced EGFR (epidermal growth factor receptor)-dependent ERK phosphorylation. Reduction in ERK phosphorylation increased the level of Lgr4, promoting intestinal stemness and cecal tumor formation. Our findings show that a ‘just-right’ ERK signaling optimal for BRAFV600E-induced cecal tumor formation can be achieved via Fak loss-mediated downregulation of ERK phosphorylation.

    1. Cancer Biology
    2. Computational and Systems Biology
    Marie Breeur, George Stepaniants ... Vivian Viallon
    Research Article

    Untargeted metabolomic profiling through liquid chromatography-mass spectrometry (LC-MS) measures a vast array of metabolites within biospecimens, advancing drug development, disease diagnosis, and risk prediction. However, the low throughput of LC-MS poses a major challenge for biomarker discovery, annotation, and experimental comparison, necessitating the merging of multiple datasets. Current data pooling methods encounter practical limitations due to their vulnerability to data variations and hyperparameter dependence. Here, we introduce GromovMatcher, a flexible and user-friendly algorithm that automatically combines LC-MS datasets using optimal transport. By capitalizing on feature intensity correlation structures, GromovMatcher delivers superior alignment accuracy and robustness compared to existing approaches. This algorithm scales to thousands of features requiring minimal hyperparameter tuning. Manually curated datasets for validating alignment algorithms are limited in the field of untargeted metabolomics, and hence we develop a dataset split procedure to generate pairs of validation datasets to test the alignments produced by GromovMatcher and other methods. Applying our method to experimental patient studies of liver and pancreatic cancer, we discover shared metabolic features related to patient alcohol intake, demonstrating how GromovMatcher facilitates the search for biomarkers associated with lifestyle risk factors linked to several cancer types.