Prosurvival long noncoding RNA PINCR regulates a subset of p53 targets in human colorectal cancer cells by binding to Matrin 3

  1. Ritu Chaudhary
  2. Berkley Gryder
  3. Wendy S Woods
  4. Murugan Subramanian
  5. Matthew F Jones
  6. Xiao Ling Li
  7. Lisa M Jenkins
  8. Svetlana A Shabalina
  9. Min Mo
  10. Mary Dasso
  11. Yuan Yang
  12. Lalage M Wakefield
  13. Yuelin Zhu
  14. Susan M Frier
  15. Branden S Moriarity
  16. Kannanganattu V Prasanth
  17. Pablo Perez-Pinera
  18. Ashish Lal  Is a corresponding author
  1. National Institutes of Health, United States
  2. University of Illinois at Urbana Champaign, United States
  3. Ionis Pharmaceuticals, United States
  4. University of Minnesota, United States
  5. University of Illinois at Urbana-Champaign, United States

Abstract

Thousands of long noncoding RNAs (lncRNAs) have been discovered, yet the function of the vast majority remains unclear. Here, we show that a p53-regulated lncRNA which we named PINCR (p53-induced noncoding RNA), is induced ~100-fold after DNA damage and exerts a prosurvival function in human colorectal cancer cells (CRC) in vitro and tumor growth in vivo. Targeted deletion of PINCR in CRC cells significantly impaired G1 arrest and induced hypersensitivity to chemotherapeutic drugs. PINCR regulates the induction of a subset of p53 targets involved in G1 arrest and apoptosis, including BTG2, RRM2B and GPX1. Using a novel RNA pulldown approach that utilized endogenous S1-tagged PINCR, we show that PINCR associates with the enhancer region of these genes by binding to RNA-binding protein Matrin 3 that, in turn, associates with p53. Our findings uncover a critical prosurvival function of a p53/PINCR/Matrin 3 axis in response to DNA damage in CRC cells.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Ritu Chaudhary

    Regulatory RNAs and Cancer Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Berkley Gryder

    Oncogenomics Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Gaithersburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Wendy S Woods

    Department of Bioengineering, University of Illinois at Urbana Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Murugan Subramanian

    Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Matthew F Jones

    Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Xiao Ling Li

    Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Lisa M Jenkins

    Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Svetlana A Shabalina

    National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Min Mo

    Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Mary Dasso

    Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Yuan Yang

    Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Lalage M Wakefield

    Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Yuelin Zhu

    Molecular Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Susan M Frier

    Ionis Pharmaceuticals, Carlsbad, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Branden S Moriarity

    Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Kannanganattu V Prasanth

    Department of Cell and Developmental Biology, University of Illinois at Urbana Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Pablo Perez-Pinera

    Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Ashish Lal

    Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, United States
    For correspondence
    ashish.lal@nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4299-8177

Funding

National Cancer Institute (NIH IRP)

  • Ashish Lal

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Joaquín M Espinosa, University of Colorado School of Medicine, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All animal studies were conducted under protocol LC-070 approved by the Animal Care and Use Committee of the National Cancer Institute, The Frederick National Laboratory and the Center for Cancer Research are accredited by AALAC International and follow the Public Health Service Policy for the Care and Use of Laboratory Animals.

Version history

  1. Received: November 12, 2016
  2. Accepted: May 20, 2017
  3. Accepted Manuscript published: June 5, 2017 (version 1)
  4. Version of Record published: June 14, 2017 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 3,356
    views
  • 608
    downloads
  • 65
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ritu Chaudhary
  2. Berkley Gryder
  3. Wendy S Woods
  4. Murugan Subramanian
  5. Matthew F Jones
  6. Xiao Ling Li
  7. Lisa M Jenkins
  8. Svetlana A Shabalina
  9. Min Mo
  10. Mary Dasso
  11. Yuan Yang
  12. Lalage M Wakefield
  13. Yuelin Zhu
  14. Susan M Frier
  15. Branden S Moriarity
  16. Kannanganattu V Prasanth
  17. Pablo Perez-Pinera
  18. Ashish Lal
(2017)
Prosurvival long noncoding RNA PINCR regulates a subset of p53 targets in human colorectal cancer cells by binding to Matrin 3
eLife 6:e23244.
https://doi.org/10.7554/eLife.23244

Share this article

https://doi.org/10.7554/eLife.23244

Further reading

    1. Cancer Biology
    2. Cell Biology
    Julian J A Hoving, Elizabeth Harford-Wright ... Alison C Lloyd
    Research Article

    Collective cell migration is fundamental for the development of organisms and in the adult, for tissue regeneration and in pathological conditions such as cancer. Migration as a coherent group requires the maintenance of cell-cell interactions, while contact inhibition of locomotion (CIL), a local repulsive force, can propel the group forward. Here we show that the cell-cell interaction molecule, N-cadherin, regulates both adhesion and repulsion processes during rat Schwann cell (SC) collective migration, which is required for peripheral nerve regeneration. However, distinct from its role in cell-cell adhesion, the repulsion process is independent of N-cadherin trans-homodimerisation and the associated adherens junction complex. Rather, the extracellular domain of N-cadherin is required to present the repulsive Slit2/Slit3 signal at the cell-surface. Inhibiting Slit2/Slit3 signalling inhibits CIL and subsequently collective Schwann cell migration, resulting in adherent, nonmigratory cell clusters. Moreover, analysis of ex vivo explants from mice following sciatic nerve injury showed that inhibition of Slit2 decreased Schwann cell collective migration and increased clustering of Schwann cells within the nerve bridge. These findings provide insight into how opposing signals can mediate collective cell migration and how CIL pathways are promising targets for inhibiting pathological cell migration.

    1. Cancer Biology
    2. Structural Biology and Molecular Biophysics
    Johannes Paladini, Annalena Maier ... Stephan Grzesiek
    Research Article

    Abelson tyrosine kinase (Abl) is regulated by the arrangement of its regulatory core, consisting sequentially of the SH3, SH2, and kinase (KD) domains, where an assembled or disassembled core corresponds to low or high kinase activity, respectively. It was recently established that binding of type II ATP site inhibitors, such as imatinib, generates a force from the KD N-lobe onto the SH3 domain and in consequence disassembles the core. Here, we demonstrate that the C-terminal αI-helix exerts an additional force toward the SH2 domain, which correlates both with kinase activity and type II inhibitor-induced disassembly. The αI-helix mutation E528K, which is responsible for the ABL1 malformation syndrome, strongly activates Abl by breaking a salt bridge with the KD C-lobe and thereby increasing the force onto the SH2 domain. In contrast, the allosteric inhibitor asciminib strongly reduces Abl’s activity by fixating the αI-helix and reducing the force onto the SH2 domain. These observations are explained by a simple mechanical model of Abl activation involving forces from the KD N-lobe and the αI-helix onto the KD/SH2SH3 interface.