Insights into the molecular architecture and histone H3-H4 deposition mechanism of yeast Chromatin assembly factor 1

  1. Paul Victor Sauer
  2. Jennifer Timm
  3. Danni Liu
  4. David Sitbon
  5. Elisabetta Boeri-Erba
  6. Christophe Velours
  7. Norbert Mücke
  8. Jörg Langowski
  9. Françoise Ochsenbein
  10. Geneviève Almouzni
  11. Daniel Panne  Is a corresponding author
  1. European Molecular Biology Laboratory, France
  2. CEA, DRF, SB2SM, Laboratoire de Biologie Structurale et Radiobiologie, France
  3. Institut Curie, France
  4. Université Grenoble Alpes, France
  5. CEA, CNRS, Université Paris-Sud, France
  6. Deutsches Krebsforschungszentrum, Germany

Abstract

How the very first step in nucleosome assembly, deposition of histone H3-H4 as tetramers or dimers on DNA, is accomplished remains largely unclear. Here we report that yeast chromatin assembly factor 1 (CAF1), a conserved histone chaperone complex that deposits H3-H4 during DNA replication, binds a single H3-H4 heterodimer in solution. We identify a new DNA binding domain in the large Cac1 subunit of CAF1, which is required for high-affinity DNA binding by the CAF1 three-subunit complex, and which is distinct from the previously described C-terminal winged-helix domain. CAF1 binds preferentially to DNA molecules longer than 40 bp, and two CAF1-H3-H4 complexes concertedly associate with DNA molecules of this size, resulting in deposition of H3-H4 tetramers. While DNA binding is not essential for H3-H4 tetrasome deposition in vitro, it is required for efficient DNA synthesis-coupled nucleosome assembly. Mutant histones with impaired H3-H4 tetramerization interactions fail to release from CAF1, indicating that DNA deposition of H3-H4 tetramers by CAF1 requires a hierarchical cooperation between DNA binding, H3-H4 deposition and histone tetramerization.

Article and author information

Author details

  1. Paul Victor Sauer

    European Molecular Biology Laboratory, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7204-5863
  2. Jennifer Timm

    European Molecular Biology Laboratory, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Danni Liu

    CEA, DRF, SB2SM, Laboratoire de Biologie Structurale et Radiobiologie, Gif-sur-Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
  4. David Sitbon

    Institut Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Elisabetta Boeri-Erba

    Institut de Biologie Structurale, Université Grenoble Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Christophe Velours

    Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris-Sud, Gif-sur-Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Norbert Mücke

    Abteilung Biophysik der Makromoleküle, Deutsches Krebsforschungszentrum, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Jörg Langowski

    Abteilung Biophysik der Makromoleküle, Deutsches Krebsforschungszentrum, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Françoise Ochsenbein

    CEA, DRF, SB2SM, Laboratoire de Biologie Structurale et Radiobiologie, Gif-sur-Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Geneviève Almouzni

    Institut Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Daniel Panne

    European Molecular Biology Laboratory, Grenoble, France
    For correspondence
    panne@embl.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9158-5507

Funding

Agence Nationale de la Recherche (ANR-16-CE11-0028-02)

  • Paul Victor Sauer
  • Jennifer Timm
  • Danni Liu
  • David Sitbon

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Paul D. Kaufman, U. Massachusetts Medical School, United States

Publication history

  1. Received: November 21, 2016
  2. Accepted: March 9, 2017
  3. Accepted Manuscript published: March 18, 2017 (version 1)
  4. Version of Record published: April 25, 2017 (version 2)

Copyright

© 2017, Sauer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,593
    Page views
  • 820
    Downloads
  • 30
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Paul Victor Sauer
  2. Jennifer Timm
  3. Danni Liu
  4. David Sitbon
  5. Elisabetta Boeri-Erba
  6. Christophe Velours
  7. Norbert Mücke
  8. Jörg Langowski
  9. Françoise Ochsenbein
  10. Geneviève Almouzni
  11. Daniel Panne
(2017)
Insights into the molecular architecture and histone H3-H4 deposition mechanism of yeast Chromatin assembly factor 1
eLife 6:e23474.
https://doi.org/10.7554/eLife.23474

Further reading

    1. Biochemistry and Chemical Biology
    Meiling Wu, Anda Zhao ... Dongyun Shi
    Research Article

    Antioxidant intervention is considered to inhibit reactive oxygen species (ROS) and alleviates hyperglycemia. Paradoxically, moderate exercise can produce ROS to improve diabetes. The exact redox mechanism of these two different approaches remains largely unclear. Here, by comparing exercise and antioxidants intervention on type 2 diabetic rats, we found moderate exercise upregulated compensatory antioxidant capability and reached a higher level of redox balance in the liver. In contrast, antioxidant intervention achieved a low-level redox balance by inhibiting oxidative stress. Both of these two interventions could promote glucose catabolism and inhibit gluconeogenesis through activation of hepatic AMPK signaling, therefore ameliorating diabetes. During exercise, different levels of ROS generated by exercise have differential regulations on the activity and expression of hepatic AMPK. Moderate exercise-derived ROS promoted hepatic AMPK glutathionylation activation. However, excessive exercise increased oxidative damage and inhibited the activity and expression of AMPK. Overall, our results illustrate that both exercise and antioxidant intervention improve blood glucose in diabetes by promoting redox balance, despite different levels of redox balance. These results indicate that the AMPK signaling activation, combined with oxidative damage markers, could act as a sensitive biomarker, reflecting the threshold of redox balance defining effective treatment in diabetes. These findings provide theoretical evidence for the precise treatment of diabetes by antioxidants and exercise.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Edmundo G Vides, Ayan Adhikari ... Suzanne R Pfeffer
    Research Advance

    Activating mutations in the Leucine Rich Repeat Kinase 2 (LRRK2) cause Parkinson's disease and previously we showed that activated LRRK2 phosphorylates a subset of Rab GTPases (Steger et al., 2017). Moreover, Golgi-associated Rab29 can recruit LRRK2 to the surface of the Golgi and activate it there for both auto- and Rab substrate phosphorylation. Here we define the precise Rab29 binding region of the LRRK2 Armadillo domain between residues 360-450 and show that this domain, termed 'Site #1', can also bind additional LRRK2 substrates, Rab8A and Rab10. Moreover, we identify a distinct, N-terminal, higher affinity interaction interface between LRRK2 phosphorylated Rab8 and Rab10 termed 'Site #2', that can retain LRRK2 on membranes in cells to catalyze multiple, subsequent phosphorylation events. Kinase inhibitor washout experiments demonstrate that rapid recovery of kinase activity in cells depends on the ability of LRRK2 to associate with phosphorylated Rab proteins, and phosphorylated Rab8A stimulates LRRK2 phosphorylation of Rab10 in vitro. Reconstitution of purified LRRK2 recruitment onto planar lipid bilayers decorated with Rab10 protein demonstrates cooperative association of only active LRRK2 with phospho-Rab10-containing membrane surfaces. These experiments reveal a feed-forward pathway that provides spatial control and membrane activation of LRRK2 kinase activity.