Fluorescence lifetime imaging microscopy reveals rerouting of SNARE trafficking driving dendritic cell activation

Abstract

SNARE proteins play a crucial role in intracellular trafficking by catalyzing membrane fusion, but assigning SNAREs to specific intracellular transport routes is challenging with current techniques. We developed a novel Förster resonance energy transfer-fluorescence lifetime imaging microscopy (FRET-FLIM)-based technique allowing visualization of real-time local interactions of fluorescently tagged SNARE proteins in live cells. We used FRET-FLIM to delineate the trafficking steps underlying the release of the inflammatory cytokine interleukin-6 (IL-6) from human blood-derived dendritic cells. We found that activation of dendritic cells by bacterial lipopolysaccharide leads to increased FRET of fluorescently labeled syntaxin 4 with VAMP3 specifically at the plasma membrane, indicating increased SNARE complex formation, whereas FRET with other tested SNAREs was unaltered. Our results revealed that SNARE complexing is a key regulatory step for cytokine production by immune cells and prove the applicability of FRET-FLIM for visualizing SNARE complexes in live cells with subcellular spatial resolution.

Article and author information

Author details

  1. Daniëlle Rianne José Verboogen

    Department of Tumor Immunology, Radboud University Medical Center, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  2. Natalia González Mancha

    Department of Tumor Immunology, Radboud University Medical Center, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Martin ter Beest

    Department of Tumor Immunology, Radboud University Medical Center, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Geert van den Bogaart

    Department of Tumor Immunology, Radboud University Medical Center, Nijmegen, Netherlands
    For correspondence
    geert.vandenbogaart@radboudumc.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2180-6735

Funding

Seventh Framework Programme (336479)

  • Geert van den Bogaart

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO-ALW VIDI 864.14.001)

  • Geert van den Bogaart

Human Frontier Science Program (CDA-00022/2014)

  • Geert van den Bogaart

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Monocytes were isolated from blood of healthy individuals (informed consent and consent to publish obtained, approved by Sanquin ethical committee and according to Radboudumc institutional guidelines).

Copyright

© 2017, Verboogen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,292
    views
  • 577
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daniëlle Rianne José Verboogen
  2. Natalia González Mancha
  3. Martin ter Beest
  4. Geert van den Bogaart
(2017)
Fluorescence lifetime imaging microscopy reveals rerouting of SNARE trafficking driving dendritic cell activation
eLife 6:e23525.
https://doi.org/10.7554/eLife.23525

Share this article

https://doi.org/10.7554/eLife.23525

Further reading

    1. Structural Biology and Molecular Biophysics
    Laura-Marie Silbermann, Benjamin Vermeer ... Katarzyna Tych
    Review Article

    Molecular chaperones are vital proteins that maintain protein homeostasis by assisting in protein folding, activation, degradation, and stress protection. Among them, heat-shock protein 90 (Hsp90) stands out as an essential proteostasis hub in eukaryotes, chaperoning hundreds of ‘clients’ (substrates). After decades of research, several ‘known unknowns’ about the molecular function of Hsp90 remain unanswered, hampering rational drug design for the treatment of cancers, neurodegenerative, and other diseases. We highlight three fundamental open questions, reviewing the current state of the field for each, and discuss new opportunities, including single-molecule technologies, to answer the known unknowns of the Hsp90 chaperone.

    1. Structural Biology and Molecular Biophysics
    Chuchu Wang, Chunyu Zhao ... Cong Liu
    Research Advance

    Previously, we reported that α-synuclein (α-syn) clusters synaptic vesicles (SV) Diao et al., 2013, and neutral phospholipid lysophosphatidylcholine (LPC) can mediate this clustering Lai et al., 2023. Meanwhile, post-translational modifications (PTMs) of α-syn such as acetylation and phosphorylation play important yet distinct roles in regulating α-syn conformation, membrane binding, and amyloid aggregation. However, how PTMs regulate α-syn function in presynaptic terminals remains unclear. Here, based on our previous findings, we further demonstrate that N-terminal acetylation, which occurs under physiological conditions and is irreversible in mammalian cells, significantly enhances the functional activity of α-syn in clustering SVs. Mechanistic studies reveal that this enhancement is caused by the N-acetylation-promoted insertion of α-syn’s N-terminus and increased intermolecular interactions on the LPC-containing membrane. N-acetylation in our work is shown to fine-tune the interaction between α-syn and LPC, mediating α-syn’s role in synaptic vesicle clustering.