Discovery of novel determinants of endothelial lineage using chimeric heterokaryons

  1. Wing Tak Wong
  2. Gianfranco Matrone
  3. XiaoYu Tian
  4. Simion Alin Tomoiaga
  5. Kin Fai Au
  6. Shu Meng
  7. Sayumi Yamazoe
  8. Daniel Sieveking
  9. Kaifu Chen
  10. David M Burns
  11. James K Chen
  12. Helen M Blau
  13. John P Cooke  Is a corresponding author
  1. Houston Methodist Research Institute, United States
  2. University of Iowa, United States
  3. Stanford University School of Medicine, United States

Abstract

We wish to identify determinants of endothelial lineage. Murine embryonic stem cells (mESC) were fused with human endothelial cells in stable, non-dividing, heterokaryons. Using RNA-seq it is possible to discriminate between human and mouse transcripts in these chimeric heterokaryons. We observed a temporal pattern of gene expression in the ESCs of the heterokaryons that recapitulated ontogeny, with early mesodermal factors being expressed before mature endothelial genes. A set of transcriptional factors not known to be involved in endothelial development was upregulated, one of which was POU class 3 homeobox 2 (Pou3f2). We confirmed its importance in differentiation to endothelial lineage via loss- and gain-of-function (LOF and GOF). Its role in vascular development was validated in zebrafish embryos using morpholino oligonucleotides. These studies provide a systematic and mechanistic approach for identifying key regulators in directed differentiation of pluripotent stem cells to somatic cell lineages.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Wing Tak Wong

    Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Gianfranco Matrone

    Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. XiaoYu Tian

    Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Simion Alin Tomoiaga

    Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Kin Fai Au

    Department of Internal Medicine, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Shu Meng

    Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Sayumi Yamazoe

    Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Daniel Sieveking

    Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Kaifu Chen

    Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. David M Burns

    Baxter Laboratory for Stem Cell Biology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. James K Chen

    Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Helen M Blau

    Baxter Laboratory for Stem Cell Biology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. John P Cooke

    Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, United States
    For correspondence
    jpcooke@houstonmethodist.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0033-9138

Funding

National Institutes of Health

  • John P Cooke

American Heart Association

  • Wing Tak Wong

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Zebrafish are kept according to the laboratory protocols described in Zebrafish: A Practical Approach (Oxford University Press, 2002). These protocols comply with the Guide for the Care and Use of Laboratory Animals, the American Association for the Accreditation of Laboratory Animal Care (AAALAC) standards, and the regulations set forth in the Animals Welfare Act (P.L. 89-544, as amended by P.L. 91-579 and P.L . 94-279). Veterinary care is provided on a 24 hours basis, including weekends and holidays, by a staff of veterinarians with specialties in laboratory animal medicine and anesthesiology, and licensed animal health technicians. Training classes are offered. All veterinary care is provided by Houston Methodist Research Institute, which is fully accredited by AAALAC (ID A4555-01) and holds an approved NIH Assurance and USDA License (start date 03/08/2013). Support includes quarantine rooms, sterile operating rooms, post-surgical recovery rooms, radiology and diagnostic laboratory services. All surgery procedures were performed under anesthesia with Tricaine 0.02 mg/ml.

Copyright

© 2017, Wong et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,487
    views
  • 262
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Wing Tak Wong
  2. Gianfranco Matrone
  3. XiaoYu Tian
  4. Simion Alin Tomoiaga
  5. Kin Fai Au
  6. Shu Meng
  7. Sayumi Yamazoe
  8. Daniel Sieveking
  9. Kaifu Chen
  10. David M Burns
  11. James K Chen
  12. Helen M Blau
  13. John P Cooke
(2017)
Discovery of novel determinants of endothelial lineage using chimeric heterokaryons
eLife 6:e23588.
https://doi.org/10.7554/eLife.23588

Share this article

https://doi.org/10.7554/eLife.23588

Further reading

    1. Cell Biology
    2. Physics of Living Systems
    David Trombley McSwiggen, Helen Liu ... Hilary P Beck
    Research Article

    The regulation of cell physiology depends largely upon interactions of functionally distinct proteins and cellular components. These interactions may be transient or long-lived, but often affect protein motion. Measurement of protein dynamics within a cellular environment, particularly while perturbing protein function with small molecules, may enable dissection of key interactions and facilitate drug discovery; however, current approaches are limited by throughput with respect to data acquisition and analysis. As a result, studies using super-resolution imaging are typically drawing conclusions from tens of cells and a few experimental conditions tested. We addressed these limitations by developing a high-throughput single-molecule tracking (htSMT) platform for pharmacologic dissection of protein dynamics in living cells at an unprecedented scale (capable of imaging >106 cells/day and screening >104 compounds). We applied htSMT to measure the cellular dynamics of fluorescently tagged estrogen receptor (ER) and screened a diverse library to identify small molecules that perturbed ER function in real time. With this one experimental modality, we determined the potency, pathway selectivity, target engagement, and mechanism of action for identified hits. Kinetic htSMT experiments were capable of distinguishing between on-target and on-pathway modulators of ER signaling. Integrated pathway analysis recapitulated the network of known ER interaction partners and suggested potentially novel, kinase-mediated regulatory mechanisms. The sensitivity of htSMT revealed a new correlation between ER dynamics and the ability of ER antagonists to suppress cancer cell growth. Therefore, measuring protein motion at scale is a powerful method to investigate dynamic interactions among proteins and may facilitate the identification and characterization of novel therapeutics.

    1. Cell Biology
    Hongqian Chen, Hui-Qing Fang ... Peng Liu
    Tools and Resources

    The FSH-FSHR pathway has been considered an essential regulator in reproductive development and fertility. But there has been emerging evidence of FSHR expression in extragonadal organs. This poses new questions and long-term debates regarding the physiological role of the FSH-FSHR, and underscores the need for reliable, in vivo analysis of FSHR expression in animal models. However, conventional methods have proven insufficient for examining FSHR expression due to several limitations. To address this challenge, we developed Fshr-ZsGreen reporter mice under the control of Fshr endogenous promoter using CRISPR-Cas9. With this novel genetic tool, we provide a reliable readout of Fshr expression at single-cell resolution level in vivo and in real time. Reporter animals were also subjected to additional analyses,to define the accurate expression profile of FSHR in gonadal and extragonadal organs/tissues. Our compelling results not only demonstrated Fshr expression in intragonadal tissues but also, strikingly, unveiled notably increased expression in Leydig cells, osteoblast lineage cells, endothelial cells in vascular structures, and epithelial cells in bronchi of the lung and renal tubes. The genetic decoding of the widespread pattern of Fshr expression highlights its physiological relevance beyond reproduction and fertility, and opens new avenues for therapeutic options for age-related disorders of the bones, lungs, kidneys, and hearts, among other tissues. Exploiting the power of the Fshr knockin reporter animals, this report provides the first comprehensive genetic record of the spatial distribution of FSHR expression, correcting a long-term misconception about Fshr expression and offering prospects for extensive exploration of FSH-FSHR biology.