The dynamic three-dimensional organization of the diploid yeast genome
Abstract
The budding yeast Saccharomyces cerevisiae is a long-standing model for the three-dimensional organization of eukaryotic genomes. However, even in this well-studied model, it is unclear how homolog pairing in diploids or environmental conditions influence overall genome organization. Here, we performed high-throughput chromosome conformation capture on diverged Saccharomyces hybrid diploids to obtain the first global view of chromosome conformation in diploid yeasts. After controlling for the Rabl-like orientation using a polymer model, we observe significant homolog proximity that increases in saturated culture conditions. Surprisingly, we observe a localized increase in homologous interactions between the HAS1-TDA1 alleles specifically under galactose induction and saturated growth. This pairing is accompanied by relocalization to the nuclear periphery and requires Nup2, suggesting a role for nuclear pore complexes. Together, these results reveal that the diploid yeast genome has a dynamic and complex 3D organization.
Data availability
-
Data from The dynamic three-dimensional organization of the diploid yeast genomePublicly available at the NCBI Gene Expression Omnibus (accession no: GSE88952).
Article and author information
Author details
Funding
National Institutes of Health (GM080484 to JHB P41GM103533 to MJD U54 DK107979 to JS and WSN)
- William S Noble
- Jason H Brickner
- Jay Shendure
- Maitreya J Dunham
National Science Foundation (graduate research fellowship DGE-1256082 to SK 1516330 to MJD)
- Seungsoo Kim
Howard Hughes Medical Institute (JS is an investigator of HHMI MJD was supported in part by a Faculty Scholar grant from HHMI)
- Jay Shendure
- Maitreya J Dunham
Canadian Institute for Advanced Research (MJD is a senior fellow in the Genetic Networks Program)
- Maitreya J Dunham
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2017, Kim et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 6,467
- views
-
- 956
- downloads
-
- 61
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Citations by DOI
-
- 61
- citations for umbrella DOI https://doi.org/10.7554/eLife.23623