Mechanism of ribosome rescue by ArfA and RF2

  1. Gabriel Demo
  2. Egor Svidritskiy
  3. Rohini Madireddy
  4. Ruben Diaz-Avalos
  5. Timothy Grant
  6. Nikolaus Grigorieff
  7. Duncan Sousa
  8. Andrei A Korostelev  Is a corresponding author
  1. University of Massachusetts Medical School, United States
  2. Medicago, United States
  3. Janelia Research Campus, Howard Hughes Medical Institute, United States
  4. Florida State University, United States

Abstract

ArfA rescues ribosomes stalled on truncated mRNAs by recruiting release factor RF2, which normally binds stop codons to catalyze peptide release. We report two 3.2-Å resolution cryo-EM structures – determined from a single sample – of the 70S ribosome with ArfA•RF2 in the A site. In both states, the ArfA C-terminus occupies the mRNA tunnel downstream of the A site. One state contains a compact inactive RF2 conformation. Ordering of the ArfA N-terminus in the second state rearranges RF2 into an extended conformation that docks the catalytic GGQ motif into the peptidyl-transferase center. Our work thus reveals the structural dynamics of ribosome rescue. The structures demonstrate how ArfA “senses” the vacant mRNA tunnel and activates RF2 to mediate peptide release without a stop codon, allowing stalled ribosomes to be recycled.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Gabriel Demo

    RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
  2. Egor Svidritskiy

    RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
  3. Rohini Madireddy

    Medicago, Durham, United States
    Competing interests
    No competing interests declared.
  4. Ruben Diaz-Avalos

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    No competing interests declared.
  5. Timothy Grant

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    No competing interests declared.
  6. Nikolaus Grigorieff

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    Nikolaus Grigorieff, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1506-909X
  7. Duncan Sousa

    Department of Biological Science, Florida State University, Tallahassee, United States
    Competing interests
    No competing interests declared.
  8. Andrei A Korostelev

    RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States
    For correspondence
    andrei.korostelev@umassmed.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1588-717X

Funding

National Institutes of Health (GM106105)

  • Andrei A Korostelev

National Institutes of Health (GM107465)

  • Andrei A Korostelev

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Demo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,746
    views
  • 453
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gabriel Demo
  2. Egor Svidritskiy
  3. Rohini Madireddy
  4. Ruben Diaz-Avalos
  5. Timothy Grant
  6. Nikolaus Grigorieff
  7. Duncan Sousa
  8. Andrei A Korostelev
(2017)
Mechanism of ribosome rescue by ArfA and RF2
eLife 6:e23687.
https://doi.org/10.7554/eLife.23687

Share this article

https://doi.org/10.7554/eLife.23687

Further reading

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Kira A Cozzolino, Lynn Sanford ... Dylan J Taatjes
    Research Article

    Hyperactive interferon (IFN) signaling is a hallmark of Down syndrome (DS), a condition caused by Trisomy 21 (T21); strategies that normalize IFN signaling could benefit this population. Mediator-associated kinases CDK8 and CDK19 drive inflammatory responses through incompletely understood mechanisms. Using sibling-matched cell lines with/without T21, we investigated Mediator kinase function in the context of hyperactive IFN in DS over a 75 min to 24 hr timeframe. Activation of IFN-response genes was suppressed in cells treated with the CDK8/CDK19 inhibitor cortistatin A (CA), via rapid suppression of IFN-responsive transcription factor (TF) activity. We also discovered that CDK8/CDK19 affect splicing, a novel means by which Mediator kinases control gene expression. To further probe Mediator kinase function, we completed cytokine screens and metabolomics experiments. Cytokines are master regulators of inflammatory responses; by screening 105 different cytokine proteins, we show that Mediator kinases help drive IFN-dependent cytokine responses at least in part through transcriptional regulation of cytokine genes and receptors. Metabolomics revealed that Mediator kinase inhibition altered core metabolic pathways in cell type-specific ways, and broad upregulation of anti-inflammatory lipid mediators occurred specifically in kinase-inhibited cells during hyperactive IFNγ signaling. A subset of these lipids (e.g. oleamide, desmosterol) serve as ligands for nuclear receptors PPAR and LXR, and activation of these receptors occurred specifically during hyperactive IFN signaling in CA-treated cells, revealing mechanistic links between Mediator kinases, lipid metabolism, and nuclear receptor function. Collectively, our results establish CDK8/CDK19 as context-specific metabolic regulators, and reveal that these kinases control gene expression not only via TFs, but also through metabolic changes and splicing. Moreover, we establish that Mediator kinase inhibition antagonizes IFN signaling through transcriptional, metabolic, and cytokine responses, with implications for DS and other chronic inflammatory conditions.

    1. Biochemistry and Chemical Biology
    2. Cancer Biology
    Flavie Coquel, Sing-Zong Ho ... Philippe Pasero
    Research Article

    Cancer cells display high levels of oncogene-induced replication stress (RS) and rely on DNA damage checkpoint for viability. This feature is exploited by cancer therapies to either increase RS to unbearable levels or inhibit checkpoint kinases involved in the DNA damage response. Thus far, treatments that combine these two strategies have shown promise but also have severe adverse effects. To identify novel, better-tolerated anticancer combinations, we screened a collection of plant extracts and found two natural compounds from the plant, Psoralea corylifolia, that synergistically inhibit cancer cell proliferation. Bakuchiol inhibited DNA replication and activated the checkpoint kinase CHK1 by targeting DNA polymerases. Isobavachalcone interfered with DNA double-strand break repair by inhibiting the checkpoint kinase CHK2 and DNA end resection. The combination of bakuchiol and isobavachalcone synergistically inhibited cancer cell proliferation in vitro. Importantly, it also prevented tumor development in xenografted NOD/SCID mice. The synergistic effect of inhibiting DNA replication and CHK2 signaling identifies a vulnerability of cancer cells that might be exploited by using clinically approved inhibitors in novel combination therapies.