Mechanism of ribosome rescue by ArfA and RF2

  1. Gabriel Demo
  2. Egor Svidritskiy
  3. Rohini Madireddy
  4. Ruben Diaz-Avalos
  5. Timothy Grant
  6. Nikolaus Grigorieff
  7. Duncan Sousa
  8. Andrei A Korostelev  Is a corresponding author
  1. University of Massachusetts Medical School, United States
  2. Medicago, United States
  3. Janelia Research Campus, Howard Hughes Medical Institute, United States
  4. Florida State University, United States

Abstract

ArfA rescues ribosomes stalled on truncated mRNAs by recruiting release factor RF2, which normally binds stop codons to catalyze peptide release. We report two 3.2-Å resolution cryo-EM structures – determined from a single sample – of the 70S ribosome with ArfA•RF2 in the A site. In both states, the ArfA C-terminus occupies the mRNA tunnel downstream of the A site. One state contains a compact inactive RF2 conformation. Ordering of the ArfA N-terminus in the second state rearranges RF2 into an extended conformation that docks the catalytic GGQ motif into the peptidyl-transferase center. Our work thus reveals the structural dynamics of ribosome rescue. The structures demonstrate how ArfA “senses” the vacant mRNA tunnel and activates RF2 to mediate peptide release without a stop codon, allowing stalled ribosomes to be recycled.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Gabriel Demo

    RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
  2. Egor Svidritskiy

    RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
  3. Rohini Madireddy

    Medicago, Durham, United States
    Competing interests
    No competing interests declared.
  4. Ruben Diaz-Avalos

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    No competing interests declared.
  5. Timothy Grant

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    No competing interests declared.
  6. Nikolaus Grigorieff

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    Nikolaus Grigorieff, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1506-909X
  7. Duncan Sousa

    Department of Biological Science, Florida State University, Tallahassee, United States
    Competing interests
    No competing interests declared.
  8. Andrei A Korostelev

    RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States
    For correspondence
    andrei.korostelev@umassmed.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1588-717X

Funding

National Institutes of Health (GM106105)

  • Andrei A Korostelev

National Institutes of Health (GM107465)

  • Andrei A Korostelev

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Demo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,774
    views
  • 453
    downloads
  • 48
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gabriel Demo
  2. Egor Svidritskiy
  3. Rohini Madireddy
  4. Ruben Diaz-Avalos
  5. Timothy Grant
  6. Nikolaus Grigorieff
  7. Duncan Sousa
  8. Andrei A Korostelev
(2017)
Mechanism of ribosome rescue by ArfA and RF2
eLife 6:e23687.
https://doi.org/10.7554/eLife.23687

Share this article

https://doi.org/10.7554/eLife.23687

Further reading

    1. Biochemistry and Chemical Biology
    Nelson García-Vázquez, Tania J González-Robles ... Michele Pagano
    Research Article

    In healthy cells, cyclin D1 is expressed during the G1 phase of the cell cycle, where it activates CDK4 and CDK6. Its dysregulation is a well-established oncogenic driver in numerous human cancers. The cancer-related function of cyclin D1 has been primarily studied by focusing on the phosphorylation of the retinoblastoma (RB) gene product. Here, using an integrative approach combining bioinformatic analyses and biochemical experiments, we show that GTSE1 (G-Two and S phases expressed protein 1), a protein positively regulating cell cycle progression, is a previously unrecognized substrate of cyclin D1–CDK4/6 in tumor cells overexpressing cyclin D1 during G1 and subsequent phases. The phosphorylation of GTSE1 mediated by cyclin D1–CDK4/6 inhibits GTSE1 degradation, leading to high levels of GTSE1 across all cell cycle phases. Functionally, the phosphorylation of GTSE1 promotes cellular proliferation and is associated with poor prognosis within a pan-cancer cohort. Our findings provide insights into cyclin D1’s role in cell cycle control and oncogenesis beyond RB phosphorylation.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Mai Nguyen, Elda Bauda ... Cecile Morlot
    Research Article

    Teichoic acids (TA) are linear phospho-saccharidic polymers and important constituents of the cell envelope of Gram-positive bacteria, either bound to the peptidoglycan as wall teichoic acids (WTA) or to the membrane as lipoteichoic acids (LTA). The composition of TA varies greatly but the presence of both WTA and LTA is highly conserved, hinting at an underlying fundamental function that is distinct from their specific roles in diverse organisms. We report the observation of a periplasmic space in Streptococcus pneumoniae by cryo-electron microscopy of vitreous sections. The thickness and appearance of this region change upon deletion of genes involved in the attachment of TA, supporting their role in the maintenance of a periplasmic space in Gram-positive bacteria as a possible universal function. Consequences of these mutations were further examined by super-resolved microscopy, following metabolic labeling and fluorophore coupling by click chemistry. This novel labeling method also enabled in-gel analysis of cell fractions. With this approach, we were able to titrate the actual amount of TA per cell and to determine the ratio of WTA to LTA. In addition, we followed the change of TA length during growth phases, and discovered that a mutant devoid of LTA accumulates the membrane-bound polymerized TA precursor.