1. Cell Biology
  2. Developmental Biology
Download icon

The interplay of stiffness and force anisotropies drive embryo elongation

  1. Thanh Thi Kim Vuong-Brender  Is a corresponding author
  2. Martine Ben Amar
  3. Julien Pontabry
  4. Michel Labouesse  Is a corresponding author
  1. Sorbonne Universités, UPMC Univ Paris 06, CNRS, France
  2. Ecole Normale Supérieure, UPMC Université Pierre et Marie Curie, Université Paris Diderot, CNRS, France
  3. Institute of Epigenetics and Stem Cells, Germany
Research Article
  • Cited 28
  • Views 2,428
  • Annotations
Cite this article as: eLife 2017;6:e23866 doi: 10.7554/eLife.23866

Abstract

The morphogenesis of tissues, like the deformation of an object, results from the interplay between their material properties and the mechanical forces exerted on them. Whereas the importance of mechanical forces in influencing cell behaviour is widely recognized, the importance of tissue material properties, in particular stiffness, has received much less attention. Using C. elegans as a model, we examine how both aspects contribute to embryonic elongation. Measuring the opening shape of the epidermal actin cortex after laser nano-ablation, we assess the spatiotemporal changes of actomyosin-dependent force and stiffness along the antero-posterior and dorso-ventral axis. Experimental data and analytical modelling show that myosin II-dependent force anisotropy within the lateral epidermis, and stiffness anisotropy within the fiber-reinforced dorso-ventral epidermis are critical to drive embryonic elongation. Together, our results establish a quantitative link between cortical tension, material properties and morphogenesis of an entire embryo.

Article and author information

Author details

  1. Thanh Thi Kim Vuong-Brender

    Laboratoire de Biologie du Développement - Institut de Biologie Paris-Seine, Sorbonne Universités, UPMC Univ Paris 06, CNRS, Paris, France
    For correspondence
    vuongthikimthanh@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6594-2881
  2. Martine Ben Amar

    Laboratoire de Physique Statistique, Ecole Normale Supérieure, UPMC Université Pierre et Marie Curie, Université Paris Diderot, CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Julien Pontabry

    Helmholtz Zentrum, Institute of Epigenetics and Stem Cells, München, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Michel Labouesse

    Laboratoire de Biologie du Développement - Institut de Biologie Paris-Seine, Sorbonne Universités, UPMC Univ Paris 06, CNRS, Paris, France
    For correspondence
    michel.labouesse@upmc.fr
    Competing interests
    The authors declare that no competing interests exist.

Funding

European Research Council (#294744)

  • Michel Labouesse

Centre National de la Recherche Scientifique (ANR-10-LABX-0030-INRT)

  • Michel Labouesse

Université de Strasbourg (ANR-10-IDEX-0002-02)

  • Michel Labouesse

Université Pierre et Marie Curie (ANR-10-LABX-0030-INRT)

  • Michel Labouesse

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. K VijayRaghavan, National Centre for Biological Sciences, Tata Institute of Fundamental Research, India

Publication history

  1. Received: December 2, 2016
  2. Accepted: January 27, 2017
  3. Accepted Manuscript published: February 9, 2017 (version 1)
  4. Accepted Manuscript updated: February 15, 2017 (version 2)
  5. Version of Record published: March 29, 2017 (version 3)

Copyright

© 2017, Vuong-Brender et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,428
    Page views
  • 750
    Downloads
  • 28
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Neuroscience
    Javier Emperador-Melero et al.
    Research Advance

    It has long been proposed that Leukocyte common Antigen-Related Receptor Protein Tyrosine Phosphatases (LAR-RPTPs) are cell-adhesion proteins that control synapse assembly. Their synaptic nanoscale localization, however, is not established, and synapse fine structure after knockout of the three vertebrate LAR-RPTPs (PTPδ, PTPσ and LAR) has not been tested. Here, superresolution microscopy reveals that PTPδ localizes to the synaptic cleft precisely apposed to postsynaptic scaffolds of excitatory and inhibitory synapses. We next assessed synapse structure in newly generated triple-conditional knockout mice for PTPδ, PTPσ and LAR, complementing a recent independent study of synapse function after LAR-RPTP ablation (Sclip and Südhof, 2020). While mild effects on synaptic vesicle clustering and active zone architecture were detected, synapse numbers and their overall structure were unaffected, membrane anchoring of the active zone persisted, and vesicle docking and release were normal. Hence, despite their localization at synaptic appositions, LAR-RPTPs are dispensable for presynapse structure and function.

    1. Cell Biology
    2. Stem Cells and Regenerative Medicine
    Carolina Ortiz-Cordero et al.
    Research Article Updated

    Mutations in the fukutin-related protein (FKRP) cause Walker-Warburg syndrome (WWS), a severe form of congenital muscular dystrophy. Here, we established a WWS human induced pluripotent stem cell-derived myogenic model that recapitulates hallmarks of WWS pathology. We used this model to investigate the therapeutic effect of metabolites of the pentose phosphate pathway in human WWS. We show that functional recovery of WWS myotubes is promoted not only by ribitol but also by its precursor ribose. Moreover, we found that the combination of each of these metabolites with NAD+ results in a synergistic effect, as demonstrated by rescue of α-dystroglycan glycosylation and laminin binding capacity. Mechanistically, we found that FKRP residual enzymatic capacity, characteristic of many recessive FKRP mutations, is required for rescue as supported by functional and structural mutational analyses. These findings provide the rationale for testing ribose/ribitol in combination with NAD+ to treat WWS and other diseases associated with FKRP mutations.