Phosphorylation of iRhom2 at the plasma membrane controls mammalian TACE-dependent inflammatory and growth factor signalling

Abstract

Proteolytic cleavage and release from the cell surface of membrane-tethered ligands is an important mechanism of regulating intercellular signalling. TACE is a major shedding protease, responsible for the liberation of the inflammatory cytokine TNFα and ligands of the epidermal growth factor receptor. iRhoms, catalytically inactive members of the rhomboid-like superfamily, have been shown to control the ER-to-Golgi transport and maturation of TACE. Here, we reveal that iRhom2 remains associated with TACE throughout the secretory pathway, and is stabilised at the cell surface by this interaction. At the plasma membrane, ERK1/2-mediated phosphorylation and 14-3-3 protein binding of the cytoplasmic amino-terminus of iRhom2 alter its interaction with mature TACE, thereby licensing its proteolytic activity. We show that this molecular mechanism is responsible for triggering inflammatory responses in primary mouse macrophages. Overall, iRhom2 binds to TACE throughout its lifecycle, implying that iRhom2 is a primary regulator of stimulated cytokine and growth factor signalling.

Article and author information

Author details

  1. Adam Graham Grieve

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  2. Hongmei Xu

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  3. Ulrike Künzel

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  4. Paul Bambrough

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  5. Boris Sieber

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  6. Matthew Freeman

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    For correspondence
    matthew.freeman@path.ox.ac.uk
    Competing interests
    Matthew Freeman, Reviewing editor, <i>eLife</i>.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0410-5451

Funding

Wellcome (101035/Z/13/Z)

  • Adam Graham Grieve
  • Hongmei Xu
  • Ulrike Künzel
  • Paul Bambrough
  • Boris Sieber
  • Matthew Freeman

Medical Research Council (Graduate student scholarship)

  • Ulrike Künzel

Boehringer Ingelheim Fonds (Graduate student scholarship)

  • Ulrike Künzel
  • Boris Sieber

National Natural Science Foundation of China (31640023)

  • Hongmei Xu

Horizon 2020 Framework Programme (Marie Sklodowska-Curie grant agreement 659166)

  • Adam Graham Grieve

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with University of Oxford and UK Government rules and guidelines. The procedures and justification for the research was approved under UK PPL 80/2584.

Copyright

© 2017, Grieve et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,361
    views
  • 659
    downloads
  • 89
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Adam Graham Grieve
  2. Hongmei Xu
  3. Ulrike Künzel
  4. Paul Bambrough
  5. Boris Sieber
  6. Matthew Freeman
(2017)
Phosphorylation of iRhom2 at the plasma membrane controls mammalian TACE-dependent inflammatory and growth factor signalling
eLife 6:e23968.
https://doi.org/10.7554/eLife.23968

Share this article

https://doi.org/10.7554/eLife.23968

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Santi Mestre-Fos, Lucas Ferguson ... Jamie HD Cate
    Research Article

    Stem cell differentiation involves a global increase in protein synthesis to meet the demands of specialized cell types. However, the molecular mechanisms underlying this translational burst and the involvement of initiation factors remains largely unknown. Here, we investigate the role of eukaryotic initiation factor 3 (eIF3) in early differentiation of human pluripotent stem cell (hPSC)-derived neural progenitor cells (NPCs). Using Quick-irCLIP and alternative polyadenylation (APA) Seq, we show eIF3 crosslinks predominantly with 3’ untranslated region (3’-UTR) termini of multiple mRNA isoforms, adjacent to the poly(A) tail. Furthermore, we find that eIF3 engagement at 3’-UTR ends is dependent on polyadenylation. High eIF3 crosslinking at 3’-UTR termini of mRNAs correlates with high translational activity, as determined by ribosome profiling, but not with translational efficiency. The results presented here show that eIF3 engages with 3’-UTR termini of highly translated mRNAs, likely reflecting a general rather than specific regulatory function of eIF3, and supporting a role of mRNA circularization in the mechanisms governing mRNA translation.

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Federico A Vignale, Andrea Hernandez Garcia ... Adrian G Turjanski
    Research Article

    Yerba mate (YM, Ilex paraguariensis) is an economically important crop marketed for the elaboration of mate, the third-most widely consumed caffeine-containing infusion worldwide. Here, we report the first genome assembly of this species, which has a total length of 1.06 Gb and contains 53,390 protein-coding genes. Comparative analyses revealed that the large YM genome size is partly due to a whole-genome duplication (Ip-α) during the early evolutionary history of Ilex, in addition to the hexaploidization event (γ) shared by core eudicots. Characterization of the genome allowed us to clone the genes encoding methyltransferase enzymes that catalyse multiple reactions required for caffeine production. To our surprise, this species has converged upon a different biochemical pathway compared to that of coffee and tea. In order to gain insight into the structural basis for the convergent enzyme activities, we obtained a crystal structure for the terminal enzyme in the pathway that forms caffeine. The structure reveals that convergent solutions have evolved for substrate positioning because different amino acid residues facilitate a different substrate orientation such that efficient methylation occurs in the independently evolved enzymes in YM and coffee. While our results show phylogenomic constraint limits the genes coopted for convergence of caffeine biosynthesis, the X-ray diffraction data suggest structural constraints are minimal for the convergent evolution of individual reactions.