Phosphorylation of iRhom2 at the plasma membrane controls mammalian TACE-dependent inflammatory and growth factor signalling

Abstract

Proteolytic cleavage and release from the cell surface of membrane-tethered ligands is an important mechanism of regulating intercellular signalling. TACE is a major shedding protease, responsible for the liberation of the inflammatory cytokine TNFα and ligands of the epidermal growth factor receptor. iRhoms, catalytically inactive members of the rhomboid-like superfamily, have been shown to control the ER-to-Golgi transport and maturation of TACE. Here, we reveal that iRhom2 remains associated with TACE throughout the secretory pathway, and is stabilised at the cell surface by this interaction. At the plasma membrane, ERK1/2-mediated phosphorylation and 14-3-3 protein binding of the cytoplasmic amino-terminus of iRhom2 alter its interaction with mature TACE, thereby licensing its proteolytic activity. We show that this molecular mechanism is responsible for triggering inflammatory responses in primary mouse macrophages. Overall, iRhom2 binds to TACE throughout its lifecycle, implying that iRhom2 is a primary regulator of stimulated cytokine and growth factor signalling.

Article and author information

Author details

  1. Adam Graham Grieve

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  2. Hongmei Xu

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  3. Ulrike Künzel

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  4. Paul Bambrough

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  5. Boris Sieber

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  6. Matthew Freeman

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    For correspondence
    matthew.freeman@path.ox.ac.uk
    Competing interests
    Matthew Freeman, Reviewing editor, <i>eLife</i>.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0410-5451

Funding

Wellcome (101035/Z/13/Z)

  • Adam Graham Grieve
  • Hongmei Xu
  • Ulrike Künzel
  • Paul Bambrough
  • Boris Sieber
  • Matthew Freeman

Medical Research Council (Graduate student scholarship)

  • Ulrike Künzel

Boehringer Ingelheim Fonds (Graduate student scholarship)

  • Ulrike Künzel
  • Boris Sieber

National Natural Science Foundation of China (31640023)

  • Hongmei Xu

Horizon 2020 Framework Programme (Marie Sklodowska-Curie grant agreement 659166)

  • Adam Graham Grieve

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Sin Urban, Johns Hopkins University/HHMI, United States

Ethics

Animal experimentation: This study was performed in strict accordance with University of Oxford and UK Government rules and guidelines. The procedures and justification for the research was approved under UK PPL 80/2584.

Version history

  1. Received: December 7, 2016
  2. Accepted: April 20, 2017
  3. Accepted Manuscript published: April 22, 2017 (version 1)
  4. Version of Record published: May 18, 2017 (version 2)

Copyright

© 2017, Grieve et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,089
    views
  • 643
    downloads
  • 87
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Adam Graham Grieve
  2. Hongmei Xu
  3. Ulrike Künzel
  4. Paul Bambrough
  5. Boris Sieber
  6. Matthew Freeman
(2017)
Phosphorylation of iRhom2 at the plasma membrane controls mammalian TACE-dependent inflammatory and growth factor signalling
eLife 6:e23968.
https://doi.org/10.7554/eLife.23968

Share this article

https://doi.org/10.7554/eLife.23968

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Katarzyna Marta Zoltowska, Utpal Das ... Lucía Chávez-Gutiérrez
    Research Article

    Amyloid β (Aβ) peptides accumulating in the brain are proposed to trigger Alzheimer’s disease (AD). However, molecular cascades underlying their toxicity are poorly defined. Here, we explored a novel hypothesis for Aβ42 toxicity that arises from its proven affinity for γ-secretases. We hypothesized that the reported increases in Aβ42, particularly in the endolysosomal compartment, promote the establishment of a product feedback inhibitory mechanism on γ-secretases, and thereby impair downstream signaling events. We conducted kinetic analyses of γ-secretase activity in cell-free systems in the presence of Aβ, as well as cell-based and ex vivo assays in neuronal cell lines, neurons, and brain synaptosomes to assess the impact of Aβ on γ-secretases. We show that human Aβ42 peptides, but neither murine Aβ42 nor human Aβ17–42 (p3), inhibit γ-secretases and trigger accumulation of unprocessed substrates in neurons, including C-terminal fragments (CTFs) of APP, p75, and pan-cadherin. Moreover, Aβ42 treatment dysregulated cellular homeostasis, as shown by the induction of p75-dependent neuronal death in two distinct cellular systems. Our findings raise the possibility that pathological elevations in Aβ42 contribute to cellular toxicity via the γ-secretase inhibition, and provide a novel conceptual framework to address Aβ toxicity in the context of γ-secretase-dependent homeostatic signaling.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Ya-Juan Wang, Xiao-Jing Di ... Ting-Wei Mu
    Research Article Updated

    Protein homeostasis (proteostasis) deficiency is an important contributing factor to neurological and metabolic diseases. However, how the proteostasis network orchestrates the folding and assembly of multi-subunit membrane proteins is poorly understood. Previous proteomics studies identified Hsp47 (Gene: SERPINH1), a heat shock protein in the endoplasmic reticulum lumen, as the most enriched interacting chaperone for gamma-aminobutyric acid type A (GABAA) receptors. Here, we show that Hsp47 enhances the functional surface expression of GABAA receptors in rat neurons and human HEK293T cells. Furthermore, molecular mechanism study demonstrates that Hsp47 acts after BiP (Gene: HSPA5) and preferentially binds the folded conformation of GABAA receptors without inducing the unfolded protein response in HEK293T cells. Therefore, Hsp47 promotes the subunit-subunit interaction, the receptor assembly process, and the anterograde trafficking of GABAA receptors. Overexpressing Hsp47 is sufficient to correct the surface expression and function of epilepsy-associated GABAA receptor variants in HEK293T cells. Hsp47 also promotes the surface trafficking of other Cys-loop receptors, including nicotinic acetylcholine receptors and serotonin type 3 receptors in HEK293T cells. Therefore, in addition to its known function as a collagen chaperone, this work establishes that Hsp47 plays a critical and general role in the maturation of multi-subunit Cys-loop neuroreceptors.