Nonlinear feedback drives homeostatic plasticity in H2O2 stress response

  1. Youlian Goulev  Is a corresponding author
  2. Sandrine Morlot
  3. Audrey Matifas
  4. Bo Huang
  5. Mikael Molin
  6. Michel B Toledano
  7. Gilles Charvin  Is a corresponding author
  1. Institut de Génétique et de Biologie Moléculaire et Cellulaire, France
  2. IBITECS, SBIGEM, CEA-Saclay, France
  3. University of Gothenburg, Sweden

Abstract

Homeostatic systems that rely on genetic regulatory networks are intrinsically limited by the transcriptional response time, which may restrict a cell's ability to adapt to unanticipated environmental challenges. To bypass this limitation, cells have evolved mechanisms whereby exposure to mild stress increases their resistance to subsequent threats. However, the mechanisms responsible for such adaptive homeostasis remain largely unknown. Here, we used live-cell imaging and microfluidics to investigate the adaptive response of budding yeast to temporally controlled H2O2 stress patterns. We demonstrate that acquisition of tolerance is a systems-level property resulting from nonlinearity of H2O2 scavenging by peroxiredoxins and our study reveals that this regulatory scheme induces a striking hormetic effect of extracellular H2O2 stress on replicative longevity. Our study thus provides a novel quantitative framework bridging the molecular architecture of a cellular homeostatic system to the emergence of nonintuitive adaptive properties.

Article and author information

Author details

  1. Youlian Goulev

    Developmental biology and stem cells department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
    For correspondence
    youlian.goulev@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  2. Sandrine Morlot

    Developmental biology and stem cells department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Audrey Matifas

    Developmental biology and stem cells department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Bo Huang

    Oxidative Stress and Cancer, IBITECS, SBIGEM, CEA-Saclay, Gif-sur-Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5945-7601
  5. Mikael Molin

    Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  6. Michel B Toledano

    Oxidative Stress and Cancer, IBITECS, SBIGEM, CEA-Saclay, Gif-sur-Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Gilles Charvin

    Developmental biology and stem cells department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
    For correspondence
    charvin@igbmc.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6852-6952

Funding

Association de recherche contre le cancer (PDF20111204470)

  • Youlian Goulev

ATIP-Avenir program

  • Gilles Charvin

Fondation pour la Recherche Médicale (DEI20151234397)

  • Gilles Charvin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Naama Barkai, Weizmann Institute of Science, Israel

Version history

  1. Received: December 6, 2016
  2. Accepted: April 14, 2017
  3. Accepted Manuscript published: April 18, 2017 (version 1)
  4. Accepted Manuscript updated: April 19, 2017 (version 2)
  5. Accepted Manuscript updated: April 27, 2017 (version 3)
  6. Version of Record published: May 19, 2017 (version 4)

Copyright

© 2017, Goulev et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,676
    views
  • 569
    downloads
  • 38
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Youlian Goulev
  2. Sandrine Morlot
  3. Audrey Matifas
  4. Bo Huang
  5. Mikael Molin
  6. Michel B Toledano
  7. Gilles Charvin
(2017)
Nonlinear feedback drives homeostatic plasticity in H2O2 stress response
eLife 6:e23971.
https://doi.org/10.7554/eLife.23971

Share this article

https://doi.org/10.7554/eLife.23971

Further reading

    1. Cell Biology
    Wan-ping Yang, Mei-qi Li ... Qian-qian Luo
    Research Article

    High-altitude polycythemia (HAPC) affects individuals living at high altitudes, characterized by increased red blood cells (RBCs) production in response to hypoxic conditions. The exact mechanisms behind HAPC are not fully understood. We utilized a mouse model exposed to hypobaric hypoxia (HH), replicating the environmental conditions experienced at 6000 m above sea level, coupled with in vitro analysis of primary splenic macrophages under 1% O2 to investigate these mechanisms. Our findings indicate that HH significantly boosts erythropoiesis, leading to erythrocytosis and splenic changes, including initial contraction to splenomegaly over 14 days. A notable decrease in red pulp macrophages (RPMs) in the spleen, essential for RBCs processing, was observed, correlating with increased iron release and signs of ferroptosis. Prolonged exposure to hypoxia further exacerbated these effects, mirrored in human peripheral blood mononuclear cells. Single-cell sequencing showed a marked reduction in macrophage populations, affecting the spleen’s ability to clear RBCs and contributing to splenomegaly. Our findings suggest splenic ferroptosis contributes to decreased RPMs, affecting erythrophagocytosis and potentially fostering continuous RBCs production in HAPC. These insights could guide the development of targeted therapies for HAPC, emphasizing the importance of splenic macrophages in disease pathology.

    1. Cell Biology
    Jurgen Denecke
    Insight

    Mapping proteins in and associated with the Golgi apparatus reveals how this cellular compartment emerges in budding yeast and progresses over time.