Nonlinear feedback drives homeostatic plasticity in H2O2 stress response

  1. Youlian Goulev  Is a corresponding author
  2. Sandrine Morlot
  3. Audrey Matifas
  4. Bo Huang
  5. Mikael Molin
  6. Michel B Toledano
  7. Gilles Charvin  Is a corresponding author
  1. Institut de Génétique et de Biologie Moléculaire et Cellulaire, France
  2. IBITECS, SBIGEM, CEA-Saclay, France
  3. University of Gothenburg, Sweden

Abstract

Homeostatic systems that rely on genetic regulatory networks are intrinsically limited by the transcriptional response time, which may restrict a cell's ability to adapt to unanticipated environmental challenges. To bypass this limitation, cells have evolved mechanisms whereby exposure to mild stress increases their resistance to subsequent threats. However, the mechanisms responsible for such adaptive homeostasis remain largely unknown. Here, we used live-cell imaging and microfluidics to investigate the adaptive response of budding yeast to temporally controlled H2O2 stress patterns. We demonstrate that acquisition of tolerance is a systems-level property resulting from nonlinearity of H2O2 scavenging by peroxiredoxins and our study reveals that this regulatory scheme induces a striking hormetic effect of extracellular H2O2 stress on replicative longevity. Our study thus provides a novel quantitative framework bridging the molecular architecture of a cellular homeostatic system to the emergence of nonintuitive adaptive properties.

Article and author information

Author details

  1. Youlian Goulev

    Developmental biology and stem cells department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
    For correspondence
    youlian.goulev@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  2. Sandrine Morlot

    Developmental biology and stem cells department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Audrey Matifas

    Developmental biology and stem cells department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Bo Huang

    Oxidative Stress and Cancer, IBITECS, SBIGEM, CEA-Saclay, Gif-sur-Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5945-7601
  5. Mikael Molin

    Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  6. Michel B Toledano

    Oxidative Stress and Cancer, IBITECS, SBIGEM, CEA-Saclay, Gif-sur-Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Gilles Charvin

    Developmental biology and stem cells department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
    For correspondence
    charvin@igbmc.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6852-6952

Funding

Association de recherche contre le cancer (PDF20111204470)

  • Youlian Goulev

ATIP-Avenir program

  • Gilles Charvin

Fondation pour la Recherche Médicale (DEI20151234397)

  • Gilles Charvin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Naama Barkai, Weizmann Institute of Science, Israel

Publication history

  1. Received: December 6, 2016
  2. Accepted: April 14, 2017
  3. Accepted Manuscript published: April 18, 2017 (version 1)
  4. Accepted Manuscript updated: April 19, 2017 (version 2)
  5. Accepted Manuscript updated: April 27, 2017 (version 3)
  6. Version of Record published: May 19, 2017 (version 4)

Copyright

© 2017, Goulev et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,420
    Page views
  • 534
    Downloads
  • 28
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Youlian Goulev
  2. Sandrine Morlot
  3. Audrey Matifas
  4. Bo Huang
  5. Mikael Molin
  6. Michel B Toledano
  7. Gilles Charvin
(2017)
Nonlinear feedback drives homeostatic plasticity in H2O2 stress response
eLife 6:e23971.
https://doi.org/10.7554/eLife.23971

Further reading

    1. Cell Biology
    Desiree Schatton et al.
    Research Article

    Proliferating cells undergo metabolic changes in synchrony with cell cycle progression and cell division. Mitochondria provide fuel, metabolites, and ATP during different phases of the cell cycle, however it is not completely understood how mitochondrial function and the cell cycle are coordinated. CLUH is a post-transcriptional regulator of mRNAs encoding mitochondrial proteins involved in oxidative phosphorylation and several metabolic pathways. Here, we show a role of CLUH in regulating the expression of astrin, which is involved in metaphase to anaphase progression, centrosome integrity, and mTORC1 inhibition. We find that CLUH binds both the SPAG5 mRNA and its product astrin, and controls the synthesis and the stability of the full-length astrin-1 isoform. We show that CLUH interacts with astrin-1 specifically during interphase. Astrin-depleted cells show mTORC1 hyperactivation and enhanced anabolism. On the other hand, cells lacking CLUH show decreased astrin levels and increased mTORC1 signaling, but cannot sustain anaplerotic and anabolic pathways. In absence of CLUH, cells fail to grow during G1, and progress faster through the cell cycle, indicating dysregulated matching of growth, metabolism and cell cycling. Our data reveal a role of CLUH in coupling growth signaling pathways and mitochondrial metabolism with cell cycle progression.

    1. Cell Biology
    Dillon Jevon et al.
    Research Article

    A developing understanding suggests that spatial compartmentalisation in pancreatic β cells is critical in controlling insulin secretion. To investigate the mechanisms, we have developed live-cell sub-cellular imaging methods using the mouse organotypic pancreatic slice. We demonstrate that the organotypic pancreatic slice, when compared with isolated islets, preserves intact β cell structure, and enhances glucose dependent Ca2+ responses and insulin secretion. Using the slice technique, we have discovered the essential role of local activation of integrins and the downstream component, focal adhesion kinase, in regulating β cells. Integrins and focal adhesion kinase are exclusively activated at the β cell capillary interface and using in situ and in vitro models we show their activation both positions presynaptic scaffold proteins, like ELKS and liprin, and regulates glucose dependent Ca2+ responses and insulin secretion. We conclude that focal adhesion kinase orchestrates the final steps of glucose dependent insulin secretion within the restricted domain where β cells contact the islet capillaries.