Attentional modulation of neuronal variability in circuit models of cortex

  1. Tatjana Kanashiro
  2. Gabriel Koch Ocker
  3. Marlene R Cohen
  4. Brent Doiron  Is a corresponding author
  1. Carnegie Mellon University and University of Pittsburgh, United States
  2. University of Pittsburgh, United States
  3. Center for the Neural Basis of Cognition, United States

Abstract

The circuit mechanisms behind shared neural variability (noise correlation) and its dependence on neural state are poorly understood. Visual attention is well-suited to constrain cortical models of response variability because attention both increases firing rates and their stimulus sensitivity, as well as decreases noise correlations. We provide a novel analysis of population recordings in rhesus primate visual area V4 showing that a single biophysical mechanism may underlie these diverse neural correlates of attention. We explore model cortical networks where top-down mediated increases in excitability, distributed across excitatory and inhibitory targets, capture the key neuronal correlates of attention. Our models predict that top-down signals primarily affect inhibitory neurons, whereas excitatory neurons are more sensitive to stimulus specific bottom-up inputs. Accounting for trial variability in models of state dependent modulation of neuronal activity is a critical step in building a mechanistic theory of neuronal cognition.

Article and author information

Author details

  1. Tatjana Kanashiro

    Program for Neural Computation, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Gabriel Koch Ocker

    Department of Mathematics, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Marlene R Cohen

    Center for the Neural Basis of Cognition, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8583-4300
  4. Brent Doiron

    Department of Mathematics, University of Pittsburgh, Pittsburgh, United States
    For correspondence
    bdoiron@pitt.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6916-5511

Funding

Simons Collaboration on the Global Brain

  • Marlene R Cohen
  • Brent Doiron

National Institutes of Health (R01 EY022930)

  • Marlene R Cohen

National Science Foundation (DMS-1313225)

  • Tatjana Kanashiro
  • Gabriel Koch Ocker
  • Brent Doiron

National Science Foundation (DMS-1517082)

  • Gabriel Koch Ocker
  • Brent Doiron

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures were in accordance with the Institutional Animal Care and Use Committee of Harvard Medical School (Harvard IACUC protocol number: 04214).

Copyright

© 2017, Kanashiro et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,600
    views
  • 783
    downloads
  • 77
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tatjana Kanashiro
  2. Gabriel Koch Ocker
  3. Marlene R Cohen
  4. Brent Doiron
(2017)
Attentional modulation of neuronal variability in circuit models of cortex
eLife 6:e23978.
https://doi.org/10.7554/eLife.23978

Share this article

https://doi.org/10.7554/eLife.23978

Further reading

    1. Neuroscience
    Shuo Zhang, Yan Tian ... Haiyan Wu
    Research Article

    Active inference integrates perception, decision-making, and learning into a united theoretical framework, providing an efficient way to trade off exploration and exploitation by minimizing (expected) free energy. In this study, we asked how the brain represents values and uncertainties (novelty and variability), and resolves these uncertainties under the active inference framework in the exploration-exploitation trade-off. Twenty-five participants performed a contextual two-armed bandit task, with electroencephalogram (EEG) recordings. By comparing the model evidence for active inference and reinforcement learning models of choice behavior, we show that active inference better explains human decision-making under novelty and variability, which entails exploration or information seeking. The EEG sensor-level results show that the activity in the frontal, central, and parietal regions is associated with novelty, while the activity in the frontal and central brain regions is associated with variability. The EEG source-level results indicate that the expected free energy is encoded in the frontal pole and middle frontal gyrus and uncertainties are encoded in different brain regions but with overlap. Our study dissociates the expected free energy and uncertainties in active inference theory and their neural correlates, speaking to the construct validity of active inference in characterizing cognitive processes of human decisions. It provides behavioral and neural evidence of active inference in decision processes and insights into the neural mechanism of human decisions under uncertainties.

    1. Genetics and Genomics
    2. Neuroscience
    Akanksha Bafna, Gareth Banks ... Patrick M Nolan
    Research Article

    The mammalian suprachiasmatic nucleus (SCN), situated in the ventral hypothalamus, directs daily cellular and physiological rhythms across the body. The SCN clockwork is a self-sustaining transcriptional-translational feedback loop (TTFL) that in turn coordinates the expression of clock-controlled genes (CCGs) directing circadian programmes of SCN cellular activity. In the mouse, the transcription factor, ZFHX3 (zinc finger homeobox-3), is necessary for the development of the SCN and influences circadian behaviour in the adult. The molecular mechanisms by which ZFHX3 affects the SCN at transcriptomic and genomic levels are, however, poorly defined. Here, we used chromatin immunoprecipitation sequencing to map the genomic localization of ZFHX3-binding sites in SCN chromatin. To test for function, we then conducted comprehensive RNA sequencing at six distinct times-of-day to compare the SCN transcriptional profiles of control and ZFHX3-conditional null mutants. We show that the genome-wide occupancy of ZFHX3 occurs predominantly around gene transcription start sites, co-localizing with known histone modifications, and preferentially partnering with clock transcription factors (CLOCK, BMAL1) to regulate clock gene(s) transcription. Correspondingly, we show that the conditional loss of ZFHX3 in the adult has a dramatic effect on the SCN transcriptome, including changes in the levels of transcripts encoding elements of numerous neuropeptide neurotransmitter systems while attenuating the daily oscillation of the clock TF Bmal1. Furthermore, various TTFL genes and CCGs exhibited altered circadian expression profiles, consistent with an advanced in daily behavioural rhythms under 12 h light–12 h dark conditions. Together, these findings reveal the extensive genome-wide regulation mediated by ZFHX3 in the central clock that orchestrates daily timekeeping in mammals.