Attentional modulation of neuronal variability in circuit models of cortex

  1. Tatjana Kanashiro
  2. Gabriel Koch Ocker
  3. Marlene R Cohen
  4. Brent Doiron  Is a corresponding author
  1. Carnegie Mellon University and University of Pittsburgh, United States
  2. University of Pittsburgh, United States
  3. Center for the Neural Basis of Cognition, United States

Abstract

The circuit mechanisms behind shared neural variability (noise correlation) and its dependence on neural state are poorly understood. Visual attention is well-suited to constrain cortical models of response variability because attention both increases firing rates and their stimulus sensitivity, as well as decreases noise correlations. We provide a novel analysis of population recordings in rhesus primate visual area V4 showing that a single biophysical mechanism may underlie these diverse neural correlates of attention. We explore model cortical networks where top-down mediated increases in excitability, distributed across excitatory and inhibitory targets, capture the key neuronal correlates of attention. Our models predict that top-down signals primarily affect inhibitory neurons, whereas excitatory neurons are more sensitive to stimulus specific bottom-up inputs. Accounting for trial variability in models of state dependent modulation of neuronal activity is a critical step in building a mechanistic theory of neuronal cognition.

Article and author information

Author details

  1. Tatjana Kanashiro

    Program for Neural Computation, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Gabriel Koch Ocker

    Department of Mathematics, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Marlene R Cohen

    Center for the Neural Basis of Cognition, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8583-4300
  4. Brent Doiron

    Department of Mathematics, University of Pittsburgh, Pittsburgh, United States
    For correspondence
    bdoiron@pitt.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6916-5511

Funding

Simons Collaboration on the Global Brain

  • Marlene R Cohen
  • Brent Doiron

National Institutes of Health (R01 EY022930)

  • Marlene R Cohen

National Science Foundation (DMS-1313225)

  • Tatjana Kanashiro
  • Gabriel Koch Ocker
  • Brent Doiron

National Science Foundation (DMS-1517082)

  • Gabriel Koch Ocker
  • Brent Doiron

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures were in accordance with the Institutional Animal Care and Use Committee of Harvard Medical School (Harvard IACUC protocol number: 04214).

Copyright

© 2017, Kanashiro et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,562
    views
  • 778
    downloads
  • 75
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tatjana Kanashiro
  2. Gabriel Koch Ocker
  3. Marlene R Cohen
  4. Brent Doiron
(2017)
Attentional modulation of neuronal variability in circuit models of cortex
eLife 6:e23978.
https://doi.org/10.7554/eLife.23978

Share this article

https://doi.org/10.7554/eLife.23978

Further reading

    1. Neuroscience
    Hyo Jun Kwon, Devi Santhosh, Zhen Huang
    Research Article

    Amyloid β (Aβ) forms aggregates in the Alzheimer’s disease brain and is well known for its pathological roles. Recent studies show that it also regulates neuronal physiology in the healthy brain. Whether Aβ also regulates glial physiology in the normal brain, however, has remained unclear. In this article, we describe the discovery of a novel signaling pathway activated by the monomeric form of Aβ in vitro that plays essential roles in the regulation of microglial activity and the assembly of neocortex during mouse development in vivo. We find that activation of this pathway depends on the function of amyloid precursor and the heterotrimeric G protein regulator Ric8a in microglia and inhibits microglial immune activation at transcriptional and post-transcriptional levels. Genetic disruption of this pathway during neocortical development results in microglial dysregulation and excessive matrix proteinase activation, leading to basement membrane degradation, neuronal ectopia, and laminar disruption. These results uncover a previously unknown function of Aβ as a negative regulator of brain microglia and substantially elucidate the underlying molecular mechanisms. Considering the prominence of Aβ and neuroinflammation in the pathology of Alzheimer’s disease, they also highlight a potentially overlooked role of Aβ monomer depletion in the development of the disease.

    1. Neuroscience
    Viktor Nikolaus Kewenig, Gabriella Vigliocco, Jeremy I Skipper
    Research Article

    Language is acquired and processed in complex and dynamic naturalistic contexts, involving the simultaneous processing of connected speech, faces, bodies, objects, etc. How words and their associated concepts are encoded in the brain during real-world processing is still unknown. Here, the representational structure of concrete and abstract concepts was investigated during movie watching to address the extent to which brain responses dynamically change depending on visual context. First, across contexts, concrete and abstract concepts are shown to encode different experience-based information in separable sets of brain regions. However, these differences are reduced when multimodal context is considered. Specifically, the response profile of abstract words becomes more concrete-like when these are processed in visual scenes highly related to their meaning. Conversely, when the visual context is unrelated to a given concrete word, the activation pattern resembles more that of abstract conceptual processing. These results suggest that while concepts generally encode habitual experiences, the underlying neurobiological organisation is not fixed but depends dynamically on available contextual information.