Insights into electrosensory organ development, physiology and evolution from a lateral line-enriched transcriptome

  1. Melinda S Modrell
  2. Mike Lyne
  3. Adrian R Carr
  4. Harold H Zakon
  5. David Buckley
  6. Alexander S Campbell
  7. Marcus C Davis
  8. Gos Micklem
  9. Clare VH Baker  Is a corresponding author
  1. University of Cambridge, United Kingdom
  2. The University of Texas at Austin, United States
  3. Museo Nacional de Ciencias Naturales-MNCN-CSIC, Spain
  4. Kennesaw State University, United States

Abstract

The anamniote lateral line system, comprising mechanosensory neuromasts and electrosensory ampullary organs, is a useful model for investigating the developmental and evolutionary diversification of different organs and cell types. Zebrafish neuromast development is increasingly well understood, but neither zebrafish nor Xenopus is electroreceptive and our molecular understanding of ampullary organ development is rudimentary. We have used RNA-seq to generate a lateral line-enriched gene-set from late-larval paddlefish (Polyodon spathula). Validation of a subset reveals expression in developing ampullary organs of transcription factor genes critical for hair cell development, and genes essential for glutamate release at hair cell ribbon synapses, suggesting close developmental, physiological and evolutionary links between non-teleost electroreceptors and hair cells. We identify an ampullary organ-specific proneural transcription factor, and candidates for the voltage-sensing L-type Cav channel and rectifying Kv channel predicted from skate (cartilaginous fish) ampullary organ electrophysiology. Overall, our results illuminate ampullary organ development, physiology and evolution.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Melinda S Modrell

    Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Mike Lyne

    Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Adrian R Carr

    Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Harold H Zakon

    Department of Neuroscience, The University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. David Buckley

    Departmento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales-MNCN-CSIC, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  6. Alexander S Campbell

    Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Marcus C Davis

    Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2462-0138
  8. Gos Micklem

    Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6883-6168
  9. Clare VH Baker

    Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    cvhb1@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4434-3107

Funding

Biotechnology and Biological Sciences Research Council (BB/F00818X/1)

  • Clare VH Baker

Leverhulme Trust (RPG-383)

  • Clare VH Baker

Fisheries Society of the British Isles (Research Grant)

  • Melinda S Modrell

National Science Foundation (IOS 1557857)

  • Harold H Zakon

National Science Foundation (IOS 1144965)

  • Marcus C Davis

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Christine Petit, Institut Pasteur, France

Ethics

Animal experimentation: All experiments were performed in accordance with the approved institutional guidelines and regulations of the Institutional Animal Care and Use Committee of Kennesaw State University (approved protocol #12-001).

Version history

  1. Received: December 14, 2016
  2. Accepted: March 23, 2017
  3. Accepted Manuscript published: March 27, 2017 (version 1)
  4. Accepted Manuscript updated: March 31, 2017 (version 2)
  5. Accepted Manuscript updated: April 3, 2017 (version 3)
  6. Version of Record published: May 12, 2017 (version 4)

Copyright

© 2017, Modrell et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,487
    views
  • 574
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Melinda S Modrell
  2. Mike Lyne
  3. Adrian R Carr
  4. Harold H Zakon
  5. David Buckley
  6. Alexander S Campbell
  7. Marcus C Davis
  8. Gos Micklem
  9. Clare VH Baker
(2017)
Insights into electrosensory organ development, physiology and evolution from a lateral line-enriched transcriptome
eLife 6:e24197.
https://doi.org/10.7554/eLife.24197

Share this article

https://doi.org/10.7554/eLife.24197

Further reading

    1. Developmental Biology
    2. Medicine
    Stephen E Flaherty III, Olivier Bezy ... Zhidan Wu
    Research Article

    From a forward mutagenetic screen to discover mutations associated with obesity, we identified mutations in the Spag7 gene linked to metabolic dysfunction in mice. Here, we show that SPAG7 KO mice are born smaller and develop obesity and glucose intolerance in adulthood. This obesity does not stem from hyperphagia, but a decrease in energy expenditure. The KO animals also display reduced exercise tolerance and muscle function due to impaired mitochondrial function. Furthermore, SPAG7-deficiency in developing embryos leads to intrauterine growth restriction, brought on by placental insufficiency, likely due to abnormal development of the placental junctional zone. This insufficiency leads to loss of SPAG7-deficient fetuses in utero and reduced birth weights of those that survive. We hypothesize that a ‘thrifty phenotype’ is ingrained in SPAG7 KO animals during development that leads to adult obesity. Collectively, these results indicate that SPAG7 is essential for embryonic development and energy homeostasis later in life.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Nikola Sekulovski, Jenna C Wettstein ... Kenichiro Taniguchi
    Research Article

    Amniogenesis, a process critical for continuation of healthy pregnancy, is triggered in a collection of pluripotent epiblast cells as the human embryo implants. Previous studies have established that bone morphogenetic protein (BMP) signaling is a major driver of this lineage specifying process, but the downstream BMP-dependent transcriptional networks that lead to successful amniogenesis remain to be identified. This is, in part, due to the current lack of a robust and reproducible model system that enables mechanistic investigations exclusively into amniogenesis. Here, we developed an improved model of early amnion specification, using a human pluripotent stem cell-based platform in which the activation of BMP signaling is controlled and synchronous. Uniform amniogenesis is seen within 48 hr after BMP activation, and the resulting cells share transcriptomic characteristics with amnion cells of a gastrulating human embryo. Using detailed time-course transcriptomic analyses, we established a previously uncharacterized BMP-dependent amniotic transcriptional cascade, and identified markers that represent five distinct stages of amnion fate specification; the expression of selected markers was validated in early post-implantation macaque embryos. Moreover, a cohort of factors that could potentially control specific stages of amniogenesis was identified, including the transcription factor TFAP2A. Functionally, we determined that, once amniogenesis is triggered by the BMP pathway, TFAP2A controls the progression of amniogenesis. This work presents a temporally resolved transcriptomic resource for several previously uncharacterized amniogenesis states and demonstrates a critical intermediate role for TFAP2A during amnion fate specification.