1. Evolutionary Biology
Download icon

Rapid evolution of the human mutation spectrum

  1. Kelley Harris  Is a corresponding author
  2. Jonathan K Pritchard  Is a corresponding author
  1. Stanford University, United States
Research Article
  • Cited 35
  • Views 8,100
  • Annotations
Cite this article as: eLife 2017;6:e24284 doi: 10.7554/eLife.24284

Abstract

DNA is a remarkably precise medium for copying and storing biological information. This high fidelity results from the action of hundreds of genes involved in replication, proofreading, and damage repair. Evolutionary theory suggests that in such a system, selection has limited ability to remove genetic variants that change mutation rates by small amounts or in specific sequence contexts. Consistent with this, using SNV variation as a proxy for mutational input, we report here that mutational spectra differ substantially among species, human continental groups and even some closely-related populations. Close examination of one signal, an increased TCC-to-TTC mutation rate in Europeans, indicates a burst of mutations from about 15,000 to 2,000 years ago, perhaps due to the appearance, drift, and ultimate elimination of a genetic modifier of mutation rate. Our results suggest that mutation rates can evolve markedly over short evolutionary timescales and suggest the possibility of mapping mutational modifiers.

Article and author information

Author details

  1. Kelley Harris

    Genetics, Stanford University, Stanford, CA, United States
    For correspondence
    kelleyh@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0302-2523
  2. Jonathan K Pritchard

    Department of Genetics, Stanford University, Stanford, United States
    For correspondence
    pritch@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (NRSA-F32 Grant GM116381)

  • Kelley Harris

Howard Hughes Medical Institute (Investigator Grant)

  • Jonathan K Pritchard

National Institutes of Health (R01 Grant HG008140)

  • Jonathan K Pritchard

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Gilean McVean, Oxford University, United Kingdom

Publication history

  1. Received: December 15, 2016
  2. Accepted: April 7, 2017
  3. Accepted Manuscript published: April 25, 2017 (version 1)
  4. Version of Record published: May 17, 2017 (version 2)

Copyright

© 2017, Harris & Pritchard

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,100
    Page views
  • 1,251
    Downloads
  • 35
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Evolutionary Biology
    2. Immunology and Inflammation
    Damilola Pinheiro et al.
    Research Article

    Neutrophils constitute the largest population of phagocytic granulocytes in the blood of mammals. The development and function of neutrophils and monocytes is primarily governed by the granulocyte colony-stimulating factor receptor family (CSF3R/CSF3) and macrophage colony-stimulating factor receptor family (CSF1R/IL34/CSF1) respectively. Using various techniques this study considered how the emergence of receptor:ligand pairings shaped the distribution of blood myeloid cell populations. Comparative gene analysis supported the ancestral pairings of CSF1R/IL34 and CSF3R/CSF3, and the emergence of CSF1 later in lineages after the advent of Jawed/Jawless fish. Further analysis suggested that the emergence of CSF3 lead to reorganisation of granulocyte distribution between amphibian and early reptiles. However, the advent of endothermy likely contributed to the dominance of the neutrophil/heterophil in modern-day mammals and birds. In summary, we show that the emergence of CSF3R/CSF3 was a key factor in the subsequent evolution of the modern-day mammalian neutrophil.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Tom Hill, Robert L Unckless
    Research Article Updated

    Hosts and viruses are constantly evolving in response to each other: as a host attempts to suppress a virus, the virus attempts to evade and suppress the host’s immune system. Here, we describe the recurrent evolution of a virulent strain of a DNA virus, which infects multiple Drosophila species. Specifically, we identified two distinct viral types that differ 100-fold in viral titer in infected individuals, with similar differences observed in multiple species. Our analysis suggests that one of the viral types recurrently evolved at least four times in the past ~30,000 years, three times in Arizona and once in another geographically distinct species. This recurrent evolution may be facilitated by an effective mutation rate which increases as each prior mutation increases viral titer and effective population size. The higher titer viral type suppresses the host-immune system and an increased virulence compared to the low viral titer type.