Diverse stimuli engage different neutrophil extracellular trap pathways

  1. Elaine F Kenny  Is a corresponding author
  2. Alf Herzig
  3. Renate Krüger
  4. Aaron Muth
  5. Santanu Mondal
  6. Paul R Thompson
  7. Volker Brinkmann
  8. Horst Von Bernuth
  9. Arturo Zychlinsky
  1. Max Planck Institute for Infection Biology, Germany
  2. Charité Medical School, Germany
  3. University of Massachusetts Medical School, United States

Abstract

Neutrophils release neutrophil extracellular traps (NETs) which ensnare pathogens and have pathogenic functions in diverse diseases. We examined the NETosis pathways induced by five stimuli; PMA, the calcium ionophore A23187, nigericin, Candida albicans and Group B Streptococcus. We studied NET production in neutrophils from healthy donors with inhibitors of molecules crucial to PMA induced NETs including protein kinase C, calcium, reactive oxygen species, the enzymes myeloperoxidase (MPO) and neutrophil elastase. Additionally, neutrophils from chronic granulomatous disease patients, carrying mutations in the NADPH oxidase complex or a MPO-deficient patient were examined. We show that PMA, C. albicans and GBS use a related pathway for NET induction whereas ionophores require an alternative pathway but that NETs produced by all stimuli are proteolytically active, kill bacteria and composed mainly of chromosomal DNA. Thus, we demonstrate that NETosis occurs through several signalling mechanisms, suggesting that extrusion of NETs is important in host defence.

Article and author information

Author details

  1. Elaine F Kenny

    Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Berlin, Germany
    For correspondence
    kenny@mpiib-berlin.mpg.de
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9985-5620
  2. Alf Herzig

    Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Berlin, Germany
    Competing interests
    No competing interests declared.
  3. Renate Krüger

    Department of Paediatric Pneumology and Immunology, Outpatient Clinic for Primary Immunodeficiencies, Charité Medical School, Berlin, Germany
    Competing interests
    No competing interests declared.
  4. Aaron Muth

    Department of Biochemistry and Pharmacology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0646-9964
  5. Santanu Mondal

    Department of Biochemistry and Pharmacology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
  6. Paul R Thompson

    Department of Biochemistry and Pharmacology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    Paul R Thompson, P.R.T. is a consultant to Bristol-Myers Squibb..
  7. Volker Brinkmann

    Microscopy Core Facility, Max Planck Institute for Infection Biology, Berlin, Germany
    Competing interests
    No competing interests declared.
  8. Horst Von Bernuth

    Department of Paediatric Pneumology and Immunology, Outpatient Clinic for Primary Immunodeficiencies, Charité Medical School, Berlin, Germany
    Competing interests
    No competing interests declared.
  9. Arturo Zychlinsky

    Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Berlin, Germany
    Competing interests
    No competing interests declared.

Funding

Max-Planck-Gesellschaft

  • Elaine F Kenny
  • Alf Herzig
  • Arturo Zychlinsky

National Institutes of Health (GM118112)

  • Aaron Muth
  • Santanu Mondal
  • Paul R Thompson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Blood samples were collected according to the Declaration of Helsinki with study participants providing written informed consent. All samples were collected with approval from the ethics committee-Charité -Universitätsmedizin Berlin.

Copyright

© 2017, Kenny et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 15,995
    views
  • 2,577
    downloads
  • 575
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elaine F Kenny
  2. Alf Herzig
  3. Renate Krüger
  4. Aaron Muth
  5. Santanu Mondal
  6. Paul R Thompson
  7. Volker Brinkmann
  8. Horst Von Bernuth
  9. Arturo Zychlinsky
(2017)
Diverse stimuli engage different neutrophil extracellular trap pathways
eLife 6:e24437.
https://doi.org/10.7554/eLife.24437

Share this article

https://doi.org/10.7554/eLife.24437

Further reading

    1. Cell Biology
    Giuliana Giamundo, Daniela Intartaglia ... Ivan Conte
    Research Article

    Endosomes have emerged as major signaling hubs where different internalized ligand–receptor complexes are integrated and the outcome of signaling pathways are organized to regulate the strength and specificity of signal transduction events. Ezrin, a major membrane–actin linker that assembles and coordinates macromolecular signaling complexes at membranes, has emerged recently as an important regulator of lysosomal function. Here, we report that endosomal-localized EGFR/Ezrin complex interacts with and triggers the inhibition of the Tuberous Sclerosis Complex (TSC complex) in response to EGF stimuli. This is regulated through activation of the AKT signaling pathway. Loss of Ezrin was not sufficient to repress TSC complex by EGF and culminated in translocation of TSC complex to lysosomes triggering suppression of mTORC1 signaling. Overexpression of constitutively active EZRINT567D is sufficient to relocalize TSC complex to the endosomes and reactivate mTORC1. Our findings identify EZRIN as a critical regulator of autophagy via TSC complex in response to EGF stimuli and establish the central role of early endosomal signaling in the regulation of mTORC1. Consistently, Medaka fish deficient for Ezrin exhibit defective endo-lysosomal pathway, attributable to the compromised EGFR/AKT signaling, ultimately leading to retinal degeneration. Our data identify a pivotal mechanism of endo-lysosomal signaling involving Ezrin and its associated EGFR/TSC complex, which are essential for retinal function.

    1. Cell Biology
    Kelsey R Baron, Samantha Oviedo ... R Luke Wiseman
    Research Article

    Excessive mitochondrial fragmentation is associated with the pathologic mitochondrial dysfunction implicated in the pathogenesis of etiologically diverse diseases, including many neurodegenerative disorders. The integrated stress response (ISR) – comprising the four eIF2α kinases PERK, GCN2, PKR, and HRI – is a prominent stress-responsive signaling pathway that regulates mitochondrial morphology and function in response to diverse types of pathologic insult. This suggests that pharmacologic activation of the ISR represents a potential strategy to mitigate pathologic mitochondrial fragmentation associated with human disease. Here, we show that pharmacologic activation of the ISR kinases HRI or GCN2 promotes adaptive mitochondrial elongation and prevents mitochondrial fragmentation induced by the calcium ionophore ionomycin. Further, we show that pharmacologic activation of the ISR reduces mitochondrial fragmentation and restores basal mitochondrial morphology in patient fibroblasts expressing the pathogenic D414V variant of the pro-fusion mitochondrial GTPase MFN2 associated with neurological dysfunctions, including ataxia, optic atrophy, and sensorineural hearing loss. These results identify pharmacologic activation of ISR kinases as a potential strategy to prevent pathologic mitochondrial fragmentation induced by disease-relevant chemical and genetic insults, further motivating the pursuit of highly selective ISR kinase-activating compounds as a therapeutic strategy to mitigate mitochondrial dysfunction implicated in diverse human diseases.