Diverse stimuli engage different neutrophil extracellular trap pathways

  1. Elaine F Kenny  Is a corresponding author
  2. Alf Herzig
  3. Renate Krüger
  4. Aaron Muth
  5. Santanu Mondal
  6. Paul R Thompson
  7. Volker Brinkmann
  8. Horst Von Bernuth
  9. Arturo Zychlinsky
  1. Max Planck Institute for Infection Biology, Germany
  2. Charité Medical School, Germany
  3. University of Massachusetts Medical School, United States

Abstract

Neutrophils release neutrophil extracellular traps (NETs) which ensnare pathogens and have pathogenic functions in diverse diseases. We examined the NETosis pathways induced by five stimuli; PMA, the calcium ionophore A23187, nigericin, Candida albicans and Group B Streptococcus. We studied NET production in neutrophils from healthy donors with inhibitors of molecules crucial to PMA induced NETs including protein kinase C, calcium, reactive oxygen species, the enzymes myeloperoxidase (MPO) and neutrophil elastase. Additionally, neutrophils from chronic granulomatous disease patients, carrying mutations in the NADPH oxidase complex or a MPO-deficient patient were examined. We show that PMA, C. albicans and GBS use a related pathway for NET induction whereas ionophores require an alternative pathway but that NETs produced by all stimuli are proteolytically active, kill bacteria and composed mainly of chromosomal DNA. Thus, we demonstrate that NETosis occurs through several signalling mechanisms, suggesting that extrusion of NETs is important in host defence.

Article and author information

Author details

  1. Elaine F Kenny

    Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Berlin, Germany
    For correspondence
    kenny@mpiib-berlin.mpg.de
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9985-5620
  2. Alf Herzig

    Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Berlin, Germany
    Competing interests
    No competing interests declared.
  3. Renate Krüger

    Department of Paediatric Pneumology and Immunology, Outpatient Clinic for Primary Immunodeficiencies, Charité Medical School, Berlin, Germany
    Competing interests
    No competing interests declared.
  4. Aaron Muth

    Department of Biochemistry and Pharmacology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0646-9964
  5. Santanu Mondal

    Department of Biochemistry and Pharmacology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
  6. Paul R Thompson

    Department of Biochemistry and Pharmacology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    Paul R Thompson, P.R.T. is a consultant to Bristol-Myers Squibb..
  7. Volker Brinkmann

    Microscopy Core Facility, Max Planck Institute for Infection Biology, Berlin, Germany
    Competing interests
    No competing interests declared.
  8. Horst Von Bernuth

    Department of Paediatric Pneumology and Immunology, Outpatient Clinic for Primary Immunodeficiencies, Charité Medical School, Berlin, Germany
    Competing interests
    No competing interests declared.
  9. Arturo Zychlinsky

    Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Berlin, Germany
    Competing interests
    No competing interests declared.

Funding

Max-Planck-Gesellschaft

  • Elaine F Kenny
  • Alf Herzig
  • Arturo Zychlinsky

National Institutes of Health (GM118112)

  • Aaron Muth
  • Santanu Mondal
  • Paul R Thompson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Blood samples were collected according to the Declaration of Helsinki with study participants providing written informed consent. All samples were collected with approval from the ethics committee-Charité -Universitätsmedizin Berlin.

Copyright

© 2017, Kenny et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 15,806
    views
  • 2,562
    downloads
  • 572
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elaine F Kenny
  2. Alf Herzig
  3. Renate Krüger
  4. Aaron Muth
  5. Santanu Mondal
  6. Paul R Thompson
  7. Volker Brinkmann
  8. Horst Von Bernuth
  9. Arturo Zychlinsky
(2017)
Diverse stimuli engage different neutrophil extracellular trap pathways
eLife 6:e24437.
https://doi.org/10.7554/eLife.24437

Share this article

https://doi.org/10.7554/eLife.24437

Further reading

    1. Cell Biology
    2. Physics of Living Systems
    David Trombley McSwiggen, Helen Liu ... Hilary P Beck
    Research Article

    The regulation of cell physiology depends largely upon interactions of functionally distinct proteins and cellular components. These interactions may be transient or long-lived, but often affect protein motion. Measurement of protein dynamics within a cellular environment, particularly while perturbing protein function with small molecules, may enable dissection of key interactions and facilitate drug discovery; however, current approaches are limited by throughput with respect to data acquisition and analysis. As a result, studies using super-resolution imaging are typically drawing conclusions from tens of cells and a few experimental conditions tested. We addressed these limitations by developing a high-throughput single-molecule tracking (htSMT) platform for pharmacologic dissection of protein dynamics in living cells at an unprecedented scale (capable of imaging >106 cells/day and screening >104 compounds). We applied htSMT to measure the cellular dynamics of fluorescently tagged estrogen receptor (ER) and screened a diverse library to identify small molecules that perturbed ER function in real time. With this one experimental modality, we determined the potency, pathway selectivity, target engagement, and mechanism of action for identified hits. Kinetic htSMT experiments were capable of distinguishing between on-target and on-pathway modulators of ER signaling. Integrated pathway analysis recapitulated the network of known ER interaction partners and suggested potentially novel, kinase-mediated regulatory mechanisms. The sensitivity of htSMT revealed a new correlation between ER dynamics and the ability of ER antagonists to suppress cancer cell growth. Therefore, measuring protein motion at scale is a powerful method to investigate dynamic interactions among proteins and may facilitate the identification and characterization of novel therapeutics.

    1. Cell Biology
    2. Neuroscience
    Jiayao Zhang, Juan Li ... Weicai Liu
    Research Article

    It has been well validated that chronic psychological stress leads to bone loss, but the underlying mechanism remains unclarified. In this study, we established and analyzed the chronic unpredictable mild stress (CUMS) mice to investigate the miRNA-related pathogenic mechanism involved in psychological stress-induced osteoporosis. Our result found that these CUMS mice exhibited osteoporosis phenotype that is mainly attributed to the abnormal activities of osteoclasts. Subsequently, miRNA sequencing and other analysis showed that miR-335-3p, which is normally highly expressed in the brain, was significantly downregulated in the nucleus ambiguous, serum, and bone of the CUMS mice. Additionally, in vitro studies detected that miR-335-3p is important for osteoclast differentiation, with its direct targeting site in Fos. Further studies demonstrated FOS was upregulated in CUMS osteoclast, and the inhibition of FOS suppressed the accelerated osteoclastic differentiation, as well as the expression of osteoclastic genes, such as Nfatc1, Acp5, and Mmp9, in miR-335-3p-restrained osteoclasts. In conclusion, this work indicated that psychological stress may downregulate the miR-335-3p expression, which resulted in the accumulation of FOS and the upregulation of NFACT1 signaling pathway in osteoclasts, leading to its accelerated differentiation and abnormal activity. These results decipher a previously unrecognized paradigm that miRNA can act as a link between psychological stress and bone metabolism.