RISC-Interacting Clearing 3’- 5’ Exoribonucleases (RICEs) degrade uridylated cleavage fragments to maintain functional RISC in Arabidopsis

  1. Zhonghui Zhang
  2. Fuqu Hu
  3. Min Woo Sung
  4. Chang Shu
  5. Claudia Castillo-González
  6. Hisashi Koiwa
  7. Guiliang Tang
  8. Marty Dickman
  9. Pingwei Li  Is a corresponding author
  10. Xiuren Zhang  Is a corresponding author
  1. Texas A&M University, United States
  2. Michigan Technological University, United States

Abstract

RNA-induced Silencing Complex (RISC) is composed of miRNAs and AGO proteins. AGOs use miRNAs as guides to slice target mRNAs to produce truncated 5' and 3' RNA fragments. The 5' cleaved RNA fragments are marked with uridylation for degradation. Here, we identified novel cofactors of Arabidopsis AGOs, named RICE1 and RICE2. RICE proteins specifically degraded single-strand (ss) RNAs in vitro; but neither miRNAs nor miRNA*s in vivo. RICE1 exhibited a DnaQ-like exonuclease fold and formed a homohexamer with the active sites located at the interfaces between RICE1 subunits. Notably, ectopic expression of catalytically-inactive RICE1 not only significantly reduced miRNA levels; but also increased 5' cleavage RISC fragments with extended uridine tails. We conclude that RICEs act to degrade uridylated 5’ products of AGO cleavage to maintain functional RISC. Our study also suggests a possible link between decay of cleaved target mRNAs and miRNA stability in RISC.

Data availability

The following data sets were generated
    1. Zhang Z
    2. Zhang X
    (2017) small RNAs in RICE mutants
    Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE96951).
    1. Min Woo Sung
    2. Pingwei Li
    3. and Xiuren Zhang
    (2017) protein structure of RICE1
    Publicly available at the RCSB Protein Data Bank (accession no. 5V5F).

Article and author information

Author details

  1. Zhonghui Zhang

    Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Fuqu Hu

    Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Min Woo Sung

    Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Chang Shu

    Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Claudia Castillo-González

    Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Hisashi Koiwa

    Department of Horticulture, Texas A&M University, College Station, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Guiliang Tang

    Department of Biological Sciences, Michigan Technological University, Houghton, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Marty Dickman

    Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6091-6921
  9. Pingwei Li

    Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
    For correspondence
    pingwei@tamu.edu
    Competing interests
    The authors declare that no competing interests exist.
  10. Xiuren Zhang

    Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
    For correspondence
    xiuren.zhang@tamu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8982-2999

Funding

National Science Foundation (CAREER MCB-1253369)

  • Xiuren Zhang

Cancer Prevention and Research Institute of Texas (RP160822)

  • Xiuren Zhang

The authors declare that there was no funding for this work.

Copyright

© 2017, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,350
    views
  • 721
    downloads
  • 45
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhonghui Zhang
  2. Fuqu Hu
  3. Min Woo Sung
  4. Chang Shu
  5. Claudia Castillo-González
  6. Hisashi Koiwa
  7. Guiliang Tang
  8. Marty Dickman
  9. Pingwei Li
  10. Xiuren Zhang
(2017)
RISC-Interacting Clearing 3’- 5’ Exoribonucleases (RICEs) degrade uridylated cleavage fragments to maintain functional RISC in Arabidopsis
eLife 6:e24466.
https://doi.org/10.7554/eLife.24466

Share this article

https://doi.org/10.7554/eLife.24466

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Joar Esteban Pinto Torres, Mathieu Claes ... Yann G-J Sterckx
    Research Article

    African trypanosomes are the causative agents of neglected tropical diseases affecting both humans and livestock. Disease control is highly challenging due to an increasing number of drug treatment failures. African trypanosomes are extracellular, blood-borne parasites that mainly rely on glycolysis for their energy metabolism within the mammalian host. Trypanosomal glycolytic enzymes are therefore of interest for the development of trypanocidal drugs. Here, we report the serendipitous discovery of a camelid single-domain antibody (sdAb aka Nanobody) that selectively inhibits the enzymatic activity of trypanosomatid (but not host) pyruvate kinases through an allosteric mechanism. By combining enzyme kinetics, biophysics, structural biology, and transgenic parasite survival assays, we provide a proof-of-principle that the sdAb-mediated enzyme inhibition negatively impacts parasite fitness and growth.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Eva Herdering, Tristan Reif-Trauttmansdorff ... Ruth Anne Schmitz
    Research Article

    Glutamine synthetases (GS) are central enzymes essential for the nitrogen metabolism across all domains of life. Consequently, they have been extensively studied for more than half a century. Based on the ATP-dependent ammonium assimilation generating glutamine, GS expression and activity are strictly regulated in all organisms. In the methanogenic archaeon Methanosarcina mazei, it has been shown that the metabolite 2-oxoglutarate (2-OG) directly induces the GS activity. Besides, modulation of the activity by interaction with small proteins (GlnK1 and sP26) has been reported. Here, we show that the strong activation of M. mazei GS (GlnA1) by 2-OG is based on the 2-OG dependent dodecamer assembly of GlnA1 by using mass photometry (MP) and single particle cryo-electron microscopy (cryo-EM) analysis of purified strep-tagged GlnA1. The dodecamer assembly from dimers occurred without any detectable intermediate oligomeric state and was not affected in the presence of GlnK1. The 2.39 Å cryo-EM structure of the dodecameric complex in the presence of 12.5 mM 2-OG demonstrated that 2-OG is binding between two monomers. Thereby, 2-OG appears to induce the dodecameric assembly in a cooperative way. Furthermore, the active site is primed by an allosteric interaction cascade caused by 2-OG-binding towards an adaption of an open active state conformation. In the presence of additional glutamine, strong feedback inhibition of GS activity was observed. Since glutamine dependent disassembly of the dodecamer was excluded by MP, feedback inhibition most likely relies on the binding of glutamine to the catalytic site. Based on our findings, we propose that under nitrogen limitation the induction of M. mazei GS into a catalytically active dodecamer is not affected by GlnK1 and crucially depends on the presence of 2-OG.