Abstract

Increased extracellular proton concentrations during neurotransmission are converted to excitatory sodium influx by acid-sensing ion channels (ASICs). 10-fold sodium/potassium selectivity in ASICs has long been attributed to a central constriction in the channel pore, but experimental verification is lacking due to the sensitivity of this structure to conventional manipulations. Here, we explored the basis for ion selectivity by incorporating unnatural amino acids into the channel, engineering channel stoichiometry and performing free energy simulations. We observed no preference for sodium at the 'GAS belt' in the central constriction. Instead, we identified a band of glutamate and aspartate side chains at the lower end of the pore that enables preferential sodium conduction.

Article and author information

Author details

  1. Timothy Lynagh

    Center for Biopharmaceuticals, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4888-4098
  2. Emelie Flood

    School of Science, RMIT University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Céline Boiteux

    School of Science, RMIT University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Matthias Wulf

    Center for Biopharmaceuticals, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  5. Vitaly V Komnatnyy

    Center for Biopharmaceuticals, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  6. Janne M Colding

    Center for Biopharmaceuticals, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  7. Toby W Allen

    School of Science, RMIT University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  8. Stephan A Pless

    Center for Biopharmaceuticals, University of Copenhagen, Copenhagen, Denmark
    For correspondence
    stephan.pless@sund.ku.dk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6654-114X

Funding

Lundbeckfonden (Lundbeck Foundation Fellowship R139-2012-12390)

  • Stephan A Pless

Carlsbergfondet (Equipment Grant 2013_01_0439)

  • Stephan A Pless

Det Frie Forskningsråd (Postdoctoral Fellowship 4092-00348B)

  • Timothy Lynagh

Australian Research Council (Project Grant DP170101732)

  • Toby W Allen

Novo Nordisk Foundation (Project Grant)

  • Stephan A Pless

National Health and Medical Research Council (Project Grant APP1104259)

  • Toby W Allen

National Institutes of Health (Project Grant U01-11567710)

  • Toby W Allen

Lundbeckfonden (Postdoctoral Fellowship R171-2014-558)

  • Timothy Lynagh

National Cancer Institute (dd7)

  • Toby W Allen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in accordance with the recommendations by the by the Danish Veterinary and Food Administration and approved under license 2014−15−0201−00031. Surgery was performed on Xenopus laevis frogs anaesthetized in 0.3% tricaine.

Copyright

© 2017, Lynagh et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,574
    views
  • 603
    downloads
  • 49
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Timothy Lynagh
  2. Emelie Flood
  3. Céline Boiteux
  4. Matthias Wulf
  5. Vitaly V Komnatnyy
  6. Janne M Colding
  7. Toby W Allen
  8. Stephan A Pless
(2017)
A selectivity filter at the intracellular end of the acid-sensing ion channel pore
eLife 6:e24630.
https://doi.org/10.7554/eLife.24630

Share this article

https://doi.org/10.7554/eLife.24630

Further reading

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Mahta Barekatain, Yameng Liu ... Mark A Hayes
    Research Article

    Organelle heterogeneity and inter-organelle contacts within a single cell contribute to the limited sensitivity of current organelle separation techniques, thus hindering organelle subpopulation characterization. Here, we use direct current insulator-based dielectrophoresis (DC-iDEP) as an unbiased separation method and demonstrate its capability by identifying distinct distribution patterns of insulin vesicles from INS-1E insulinoma cells. A multiple voltage DC-iDEP strategy with increased range and sensitivity has been applied, and a differentiation factor (ratio of electrokinetic to dielectrophoretic mobility) has been used to characterize features of insulin vesicle distribution patterns. We observed a significant difference in the distribution pattern of insulin vesicles isolated from glucose-stimulated cells relative to unstimulated cells, in accordance with maturation of vesicles upon glucose stimulation. We interpret the difference in distribution pattern to be indicative of high-resolution separation of vesicle subpopulations. DC-iDEP provides a path for future characterization of subtle biochemical differences of organelle subpopulations within any biological system.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Duk-Su Koh, Anastasiia Stratiievska ... Sharona E Gordon
    Tools and Resources

    Ligands such as insulin, epidermal growth factor, platelet-derived growth factor, and nerve growth factor (NGF) initiate signals at the cell membrane by binding to receptor tyrosine kinases (RTKs). Along with G-protein-coupled receptors, RTKs are the main platforms for transducing extracellular signals into intracellular signals. Studying RTK signaling has been a challenge, however, due to the multiple signaling pathways to which RTKs typically are coupled, including MAP/ERK, PLCγ, and Class 1A phosphoinositide 3-kinases (PI3K). The multi-pronged RTK signaling has been a barrier to isolating the effects of any one downstream pathway. Here, we used optogenetic activation of PI3K to decouple its activation from other RTK signaling pathways. In this context, we used genetic code expansion to introduce a click chemistry noncanonical amino acid into the extracellular side of membrane proteins. Applying a cell-impermeant click chemistry fluorophore allowed us to visualize delivery of membrane proteins to the plasma membrane in real time. Using these approaches, we demonstrate that activation of PI3K, without activating other pathways downstream of RTK signaling, is sufficient to traffic the TRPV1 ion channels and insulin receptors to the plasma membrane.