Abstract

Increased extracellular proton concentrations during neurotransmission are converted to excitatory sodium influx by acid-sensing ion channels (ASICs). 10-fold sodium/potassium selectivity in ASICs has long been attributed to a central constriction in the channel pore, but experimental verification is lacking due to the sensitivity of this structure to conventional manipulations. Here, we explored the basis for ion selectivity by incorporating unnatural amino acids into the channel, engineering channel stoichiometry and performing free energy simulations. We observed no preference for sodium at the 'GAS belt' in the central constriction. Instead, we identified a band of glutamate and aspartate side chains at the lower end of the pore that enables preferential sodium conduction.

Article and author information

Author details

  1. Timothy Lynagh

    Center for Biopharmaceuticals, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4888-4098
  2. Emelie Flood

    School of Science, RMIT University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Céline Boiteux

    School of Science, RMIT University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Matthias Wulf

    Center for Biopharmaceuticals, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  5. Vitaly V Komnatnyy

    Center for Biopharmaceuticals, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  6. Janne M Colding

    Center for Biopharmaceuticals, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  7. Toby W Allen

    School of Science, RMIT University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  8. Stephan A Pless

    Center for Biopharmaceuticals, University of Copenhagen, Copenhagen, Denmark
    For correspondence
    stephan.pless@sund.ku.dk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6654-114X

Funding

Lundbeckfonden (Lundbeck Foundation Fellowship R139-2012-12390)

  • Stephan A Pless

Carlsbergfondet (Equipment Grant 2013_01_0439)

  • Stephan A Pless

Det Frie Forskningsråd (Postdoctoral Fellowship 4092-00348B)

  • Timothy Lynagh

Australian Research Council (Project Grant DP170101732)

  • Toby W Allen

Novo Nordisk Foundation (Project Grant)

  • Stephan A Pless

National Health and Medical Research Council (Project Grant APP1104259)

  • Toby W Allen

National Institutes of Health (Project Grant U01-11567710)

  • Toby W Allen

Lundbeckfonden (Postdoctoral Fellowship R171-2014-558)

  • Timothy Lynagh

National Cancer Institute (dd7)

  • Toby W Allen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in accordance with the recommendations by the by the Danish Veterinary and Food Administration and approved under license 2014−15−0201−00031. Surgery was performed on Xenopus laevis frogs anaesthetized in 0.3% tricaine.

Copyright

© 2017, Lynagh et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,652
    views
  • 607
    downloads
  • 55
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Timothy Lynagh
  2. Emelie Flood
  3. Céline Boiteux
  4. Matthias Wulf
  5. Vitaly V Komnatnyy
  6. Janne M Colding
  7. Toby W Allen
  8. Stephan A Pless
(2017)
A selectivity filter at the intracellular end of the acid-sensing ion channel pore
eLife 6:e24630.
https://doi.org/10.7554/eLife.24630

Share this article

https://doi.org/10.7554/eLife.24630

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Yi-Hsuan Lin, Tae Hun Kim ... Hue Sun Chan
    Research Article

    Liquid-liquid phase separation (LLPS) involving intrinsically disordered protein regions (IDRs) is a major physical mechanism for biological membraneless compartmentalization. The multifaceted electrostatic effects in these biomolecular condensates are exemplified here by experimental and theoretical investigations of the different salt- and ATP-dependent LLPSs of an IDR of messenger RNA-regulating protein Caprin1 and its phosphorylated variant pY-Caprin1, exhibiting, for example, reentrant behaviors in some instances but not others. Experimental data are rationalized by physical modeling using analytical theory, molecular dynamics, and polymer field-theoretic simulations, indicating that interchain ion bridges enhance LLPS of polyelectrolytes such as Caprin1 and the high valency of ATP-magnesium is a significant factor for its colocalization with the condensed phases, as similar trends are observed for other IDRs. The electrostatic nature of these features complements ATP’s involvement in π-related interactions and as an amphiphilic hydrotrope, underscoring a general role of biomolecular condensates in modulating ion concentrations and its functional ramifications.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Cristina Paissoni, Sarita Puri ... Carlo Camilloni
    Research Article

    Both immunoglobulin light-chain (LC) amyloidosis (AL) and multiple myeloma (MM) share the overproduction of a clonal LC. However, while LCs in MM remain soluble in circulation, AL LCs misfold into toxic-soluble species and amyloid fibrils that accumulate in organs, leading to distinct clinical manifestations. The significant sequence variability of LCs has hindered the understanding of the mechanisms driving LC aggregation. Nevertheless, emerging biochemical properties, including dimer stability, conformational dynamics, and proteolysis susceptibility, distinguish AL LCs from those in MM under native conditions. This study aimed to identify a2 conformational fingerprint distinguishing AL from MM LCs. Using small-angle X-ray scattering (SAXS) under native conditions, we analyzed four AL and two MM LCs. We observed that AL LCs exhibited a slightly larger radius of gyration and greater deviations from X-ray crystallography-determined or predicted structures, reflecting enhanced conformational dynamics. SAXS data, integrated with molecular dynamics simulations, revealed a conformational ensemble where LCs adopt multiple states, with variable and constant domains either bent or straight. AL LCs displayed a distinct, low-populated, straight conformation (termed H state), which maximized solvent accessibility at the interface between constant and variable domains. Hydrogen-deuterium exchange mass spectrometry experimentally validated this H state. These findings reconcile diverse experimental observations and provide a precise structural target for future drug design efforts.