1. Neuroscience
Download icon

Functional dissociation of stimulus intensity encoding and predictive coding of pain in the insula

  1. Stephan Geuter  Is a corresponding author
  2. Sabrina Boll
  3. Falk Eippert
  4. Christian Büchel
  1. University Medical Center Hamburg Eppendorf, Germany
  2. University of Oxford, United Kingdom
Research Article
  • Cited 36
  • Views 2,474
  • Annotations
Cite this article as: eLife 2017;6:e24770 doi: 10.7554/eLife.24770

Abstract

The computational principles by which the brain creates a painful experience from nociception are still unknown. Classic theories suggest that cortical regions either reflect stimulus intensity or additive effects of intensity and expectations, respectively. By contrast, predictive coding theories provide a unified framework explaining how perception is shaped by the integration of beliefs about the world with mismatches resulting from the comparison of these believes against sensory input. Using functional magnetic resonance imaging during a probabilistic heat pain paradigm, we investigated which computations underlie pain perception. Skin conductance, pupil dilation, and anterior insula responses to cued pain stimuli strictly followed the response patterns hypothesized by the predictive coding model, whereas posterior insula encoded stimulus intensity. This novel functional dissociation of pain processing within the insula together with previously observed alterations in chronic pain offer a novel interpretation of aberrant pain processing as disturbed weighting of predictions and prediction errors.

Article and author information

Author details

  1. Stephan Geuter

    Department of Systems Neuroscience, University Medical Center Hamburg Eppendorf, Hamburg, Germany
    For correspondence
    stephan.geuter@colorado.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4935-5692
  2. Sabrina Boll

    Department of Systems Neuroscience, University Medical Center Hamburg Eppendorf, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Falk Eippert

    Centre for Functional Magnetic Resonance Imaging of the Brain, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3986-1719
  4. Christian Büchel

    Department of Systems Neuroscience, University Medical Center Hamburg Eppendorf, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.

Funding

Deutsche Forschungsgemeinschaft (SFB 936 A06)

  • Christian Büchel

European Commission (ERC Advanced Investigator Grant 2010-AdG_20100407)

  • Christian Büchel

Deutsche Forschungsgemeinschaft (Fellowship GE 2774/1-1)

  • Stephan Geuter

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The study was approved by and conducted in accordance with the ethics guidelines of the Medical Chamber Hamburg (PV4745). All participants provided informed consent to participate and to publish.

Reviewing Editor

  1. Heidi Johansen-Berg, University of Oxford, United Kingdom

Publication history

  1. Received: January 2, 2017
  2. Accepted: May 18, 2017
  3. Accepted Manuscript published: May 19, 2017 (version 1)
  4. Version of Record published: June 14, 2017 (version 2)

Copyright

© 2017, Geuter et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,474
    Page views
  • 548
    Downloads
  • 36
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Igor Gridchyn et al.
    Research Article Updated

    In vitro work revealed that excitatory synaptic inputs to hippocampal inhibitory interneurons could undergo Hebbian, associative, or non-associative plasticity. Both behavioral and learning-dependent reorganization of these connections has also been demonstrated by measuring spike transmission probabilities in pyramidal cell-interneuron spike cross-correlations that indicate monosynaptic connections. Here we investigated the activity-dependent modification of these connections during exploratory behavior in rats by optogenetically inhibiting pyramidal cell and interneuron subpopulations. Light application and associated firing alteration of pyramidal and interneuron populations led to lasting changes in pyramidal-interneuron connection weights as indicated by spike transmission changes. Spike transmission alterations were predicted by the light-mediated changes in the number of pre- and postsynaptic spike pairing events and by firing rate changes of interneurons but not pyramidal cells. This work demonstrates the presence of activity-dependent associative and non-associative reorganization of pyramidal-interneuron connections triggered by the optogenetic modification of the firing rate and spike synchrony of cells.

    1. Chromosomes and Gene Expression
    2. Neuroscience
    Sandra Fendl et al.
    Tools and Resources

    Neurotransmitter receptors and ion channels shape the biophysical properties of neurons, from the sign of the response mediated by neurotransmitter receptors to the dynamics shaped by voltage-gated ion channels. Therefore, knowing the localizations and types of receptors and channels present in neurons is fundamental to our understanding of neural computation. Here, we developed two approaches to visualize the subcellular localization of specific proteins in Drosophila: The flippase-dependent expression of GFP-tagged receptor subunits in single neurons and 'FlpTag', a versatile new tool for the conditional labelling of endogenous proteins. Using these methods, we investigated the subcellular distribution of the receptors GluClα, Rdl, and Dα7 and the ion channels para and Ih in motion-sensing T4/T5 neurons of the Drosophila visual system. We discovered a strictly segregated subcellular distribution of these proteins and a sequential spatial arrangement of glutamate, acetylcholine, and GABA receptors along the dendrite that matched the previously reported EM-reconstructed synapse distributions.