1. Neuroscience
Download icon

Serotonin: Slow motion

  1. Naoshige Uchida  Is a corresponding author
  2. Jeremiah Y Cohen  Is a corresponding author
  1. Harvard University, United States
  2. The Johns Hopkins University School of Medicine, United States
  • Cited 4
  • Views 2,520
  • Annotations
Cite this article as: eLife 2017;6:e24792 doi: 10.7554/eLife.24792


Optogenetic stimulation of serotonin neurons in the dorsal raphe causes mice to move more slowly without causing any apparent motor deficits or anxiety-like effects.

Main text

Of all the neurotransmitters known to have a role in the nervous system, serotonin is one of the most mysterious. It is thought to be involved in a number of brain functions (including mood, eating and sleep), and it has also been implicated in depression and other psychiatric disorders. However, compared to other neuromodulators such as dopamine (Schultz et al., 1997), there is much that we don't know about serotonin.

One might think that the development of optogenetic techniques that can stimulate specific neurons would have clarified the situation, but a clear picture has yet to emerge. For example, one study found that the stimulation of serotonin neurons in a region of the brainstem called the dorsal raphe was rewarding, meaning that it encouraged the mice to repeat certain forms of behavior (Liu et al., 2014), but later studies found that such stimulation was not rewarding, and that these neurons were instead linked to functions such as patience (the ability to wait for upcoming reward) or response inhibition (the ability to reduce speed of movement; Fonseca et al., 2015; McDevitt et al., 2014; Miyazaki et al., 2014). Another study showed that activation of serotonin neurons projecting to a specific part of the brain (the BNST) caused anxiety-like behaviors (Marcinkiewcz et al., 2016).

Now, in eLife, Zachary Mainen of the Champalimaud Centre for the Unknown and co-workers – including Patrícia Correia and Eran Lottem as joint first authors – report the results of a series of very careful experiments on mice that help to clarify the roles of serotonin (Correia et al., 2017).

First, in experiments in which the mice were confined in an arena, the researchers showed that the mice spent more time in the area of the arena where a laser was used to stimulate the dorsal raphe serotonin neurons. However, the mice did not enter the stimulation area more often; rather, they spent more time in this area because they slowed down when their serotonin neurons were stimulated by the laser. Indeed, regardless of where the animal was in the arena, or how fast it was moving, activation of these neurons immediately slowed their spontaneous locomotor activity, causing a 90% drop in speed within 1 second. The same stimulation did not interfere with other behaviors (such as rearing, digging and grooming), but it did lead to an increase in resting behavior. Correia et al. further showed that the stimulation of these neurons did not impair the performance of the mice in a skilled motor task (which involved the mice learning not to fall from a rotating rod). Furthermore, the pattern of steps during motion was not altered. These results show that stimulation of the dorsal raphe serotonin neurons reduces speed without affecting motor behaviors generally.

In an effort to determine why stimulation causes the mice to reduce speed, Correia et al. employed a well known assay of anxiety that exploits the fact that mice usually avoid the center of an open space, and spend more time at the periphery. This preference can be reduced by anxiolytic drugs and is thought to originate from the innate anxiety of the mice in an open environment. Correia et al. found that the reduction in speed was not due to increased anxiety. However, they also demonstrated that the inhibition of locomotion was greatly reduced when the animal had already started to move in the pursuit of a reward, suggesting that the effect can be overcome by a strong motivation to move. Finally, Correia et al. showed that repeated stimulation of dorsal raphe serotonin neurons over a period of days gradually increased locomotor activity (in contrast to the decrease that occurred on shorter timescales).

The exact relation between this latest work – which, in short, shows that serotonin is involved in response inhibition – and previous studies remains to be clarified. The rewarding effect observed by Liu et al. (that is, the observation that optogenetic stimulation caused the mice to visit the stimulation area more often and also spend more time there) may be due to the fact that they also stimulated other types of neurons (see also McDevitt et al., 2014).

Likewise, the differences between the present study and the work of Marcinkiewcz et al. – who found that the activation of serotonin neurons caused anxiety-like effects without affecting locomotor activity – may be because the latter stimulated a specific population of serotonin neurons projecting to the BNST, whereas the former stimulated a larger population. Nonetheless, this issue warrants further investigation because Marcinkiewcz et al. also observed some reduction in locomotion. Can the patience effect be explained by this reduction? The answer is not so simple. Correia et al. showed that when the animal had already initiated a reward-seeking behavior, locomotor inhibition did not occur as easily. Locomotor inhibition might not, therefore, manifest in a decision-making paradigm where the animal is strongly motivated to perform. Despite its common usage in everyday life, patience is likely to be controlled or affected by multiple psychological processes, and further work is needed to understand the relationship between the functions of serotonin in patience and locomotor inhibition.

Finally, the interpretation of optogenetic stimulation experiments requires some caution. Techniques such as optogenetic tagging (Cohen et al., 2015; Li et al., 2016; Liu et al., 2014) and fiber fluorometry (Matias et al., 2016; Li et al., 2016) have begun to provide data on the activity of specific serotonin neurons. These experiments generally find diverse firing patterns in serotonin neurons. It is therefore not clear if optogenetic stimulation, which activates neurons uniformly, leads to patterns of activity that are similar to those observed in natural conditions.

Even more importantly, we need to know when and how neurons change their activity, and if different populations of neurons change in the same or different ways. A previous optogenetic experiment suggested that serotonin neurons located in the median raphe (which is underneath the dorsal raphe) are related to anxiety, while serotonin neurons in the dorsal raphe are related to locomotor activity (Ohmura et al., 2014). This highlights the need to take the potential diversity of serotonin neurons into account when designing experiments.

Serotonin remains a mysterious molecule, but in setting a new standard for interpreting behavioral results, Correia et al. have taken an important step toward understanding its functions.


Article and author information

Author details

  1. Naoshige Uchida, eLife Reviewing Editor

    Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5755-9409
  2. Jeremiah Y Cohen

    Solomon H Snyder Department of Neuroscience and the Brain Science Institute, The Johns Hopkins University School of Medicine, Baltimore, United States
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.

Publication history

  1. Version of Record published: February 14, 2017 (version 1)


© 2017, Uchida et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.


  • 2,520
    Page views
  • 285
  • 4

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Kang-Ying Qian et al.
    Research Article Updated

    The development of functional synapses in the nervous system is important for animal physiology and behaviors, and its disturbance has been linked with many neurodevelopmental disorders. The synaptic transmission efficacy can be modulated by the environment to accommodate external changes, which is crucial for animal reproduction and survival. However, the underlying plasticity of synaptic transmission remains poorly understood. Here we show that in Caenorhabditis elegans, the male environment increases the hermaphrodite cholinergic transmission at the neuromuscular junction (NMJ), which alters hermaphrodites’ locomotion velocity and mating efficiency. We identify that the male-specific pheromones mediate this synaptic transmission modulation effect in a developmental stage-dependent manner. Dissection of the sensory circuits reveals that the AWB chemosensory neurons sense those male pheromones and further transduce the information to NMJ using cGMP signaling. Exposure of hermaphrodites to the male pheromones specifically increases the accumulation of presynaptic CaV2 calcium channels and clustering of postsynaptic acetylcholine receptors at cholinergic synapses of NMJ, which potentiates cholinergic synaptic transmission. Thus, our study demonstrates a circuit mechanism for synaptic modulation and behavioral flexibility by sexual dimorphic pheromones.

    1. Immunology and Inflammation
    2. Neuroscience
    Ibrahim T Mughrabi et al.
    Tools and Resources Updated

    Vagus nerve stimulation (VNS) suppresses inflammation and autoimmune diseases in preclinical and clinical studies. The underlying molecular, neurological, and anatomical mechanisms have been well characterized using acute electrophysiological stimulation of the vagus. However, there are several unanswered mechanistic questions about the effects of chronic VNS, which require solving numerous technical challenges for a long-term interface with the vagus in mice. Here, we describe a scalable model for long-term VNS in mice developed and validated in four research laboratories. We observed significant heart rate responses for at least 4 weeks in 60–90% of animals. Device implantation did not impair vagus-mediated reflexes. VNS using this implant significantly suppressed TNF levels in endotoxemia. Histological examination of implanted nerves revealed fibrotic encapsulation without axonal pathology. This model may be useful to study the physiology of the vagus and provides a tool to systematically investigate long-term VNS as therapy for chronic diseases modeled in mice.