1. Cell Biology
  2. Developmental Biology
Download icon

Organ sculpting by patterned extracellular matrix stiffness

  1. Justin Crest
  2. Alba Diz-Muñoz
  3. Dong-Yuan Chen
  4. Dan A Fletcher
  5. David Bilder  Is a corresponding author
  1. University of California, Berkeley, United States
  2. European Molecular Biology Laboratory, Germany
Research Article
  • Cited 51
  • Views 5,407
  • Annotations
Cite this article as: eLife 2017;6:e24958 doi: 10.7554/eLife.24958

Abstract

How organ-shaping mechanical imbalances are generated is a central question of morphogenesis, with existing paradigms focusing on asymmetric force generation within cells. We show here that organs can be sculpted instead by patterning anisotropic resistance within their extracellular matrix (ECM). Using direct biophysical measurements of elongating Drosophila egg chambers, we document robust mechanical anisotropy in the ECM-based basement membrane (BM) but not the underlying epithelium. Atomic force microscopy (AFM) on wild-type BM in vivo reveals an A-P symmetric stiffness gradient, which fails to develop in elongation-defective mutants. Genetic manipulation shows that the BM is instructive for tissue elongation and the determinant is relative rather than absolute stiffness, creating differential resistance to isotropic tissue expansion. The stiffness gradient requires morphogen-like signaling to regulate BM incorporation, as well as planar-polarized organization to homogenize it circumferentially. Our results demonstrate how fine mechanical patterning in the ECM can guide cells to shape an organ.

Article and author information

Author details

  1. Justin Crest

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Alba Diz-Muñoz

    Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Dong-Yuan Chen

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Dan A Fletcher

    Department of Bioengineering, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. David Bilder

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    bilder@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1842-4966

Funding

National Institutes of Health (GM68675)

  • David Bilder

Damon Runyon Cancer Research Foundation (DRG 2173-13)

  • Justin Crest

National Institutes of Health (GM111111)

  • David Bilder

Damon Runyon Cancer Research Foundation (DRG 2157-12)

  • Alba Diz-Muñoz

National Institutes of Health (GM074751)

  • Dan A Fletcher

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Allan C Spradling, Howard Hughes Medical Institute, Carnegie Institution for Science, United States

Publication history

  1. Received: January 20, 2017
  2. Accepted: June 7, 2017
  3. Accepted Manuscript published: June 27, 2017 (version 1)
  4. Version of Record published: July 10, 2017 (version 2)
  5. Version of Record updated: October 23, 2017 (version 3)

Copyright

© 2017, Crest et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,407
    Page views
  • 1,062
    Downloads
  • 51
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Neuroscience
    Javier Emperador-Melero et al.
    Research Advance

    It has long been proposed that Leukocyte common Antigen-Related Receptor Protein Tyrosine Phosphatases (LAR-RPTPs) are cell-adhesion proteins that control synapse assembly. Their synaptic nanoscale localization, however, is not established, and synapse fine structure after knockout of the three vertebrate LAR-RPTPs (PTPδ, PTPσ and LAR) has not been tested. Here, superresolution microscopy reveals that PTPδ localizes to the synaptic cleft precisely apposed to postsynaptic scaffolds of excitatory and inhibitory synapses. We next assessed synapse structure in newly generated triple-conditional knockout mice for PTPδ, PTPσ and LAR, complementing a recent independent study of synapse function after LAR-RPTP ablation (Sclip and Südhof, 2020). While mild effects on synaptic vesicle clustering and active zone architecture were detected, synapse numbers and their overall structure were unaffected, membrane anchoring of the active zone persisted, and vesicle docking and release were normal. Hence, despite their localization at synaptic appositions, LAR-RPTPs are dispensable for presynapse structure and function.

    1. Cell Biology
    2. Stem Cells and Regenerative Medicine
    Carolina Ortiz-Cordero et al.
    Research Article Updated

    Mutations in the fukutin-related protein (FKRP) cause Walker-Warburg syndrome (WWS), a severe form of congenital muscular dystrophy. Here, we established a WWS human induced pluripotent stem cell-derived myogenic model that recapitulates hallmarks of WWS pathology. We used this model to investigate the therapeutic effect of metabolites of the pentose phosphate pathway in human WWS. We show that functional recovery of WWS myotubes is promoted not only by ribitol but also by its precursor ribose. Moreover, we found that the combination of each of these metabolites with NAD+ results in a synergistic effect, as demonstrated by rescue of α-dystroglycan glycosylation and laminin binding capacity. Mechanistically, we found that FKRP residual enzymatic capacity, characteristic of many recessive FKRP mutations, is required for rescue as supported by functional and structural mutational analyses. These findings provide the rationale for testing ribose/ribitol in combination with NAD+ to treat WWS and other diseases associated with FKRP mutations.