Expression of SREBP-1c requires SREBP-2-mediated generation of a sterol ligand for LXR in livers of mice

  1. Shunxing Rong
  2. Víctor A Cortés
  3. Shirya Rashid
  4. Norma N Anderson
  5. Jeffrey G McDonald
  6. Guosheng Liang
  7. Young-Ah Moon
  8. Robert E Hammer
  9. Jay D Horton  Is a corresponding author
  1. University of Texas Southwestern Medical Center, United States
  2. North South University, Bangladesh
  3. Inha University College of Medicine, Korea (South), Republic of

Abstract

The synthesis of cholesterol and fatty acids (FA) in liver is independently regulated by SREBP-2 and SREBP-1c, respectively. Here we genetically deleted Srebf-2 from hepatocytes and confirmed that SREBP-2 regulates all genes involved in cholesterol biosynthesis, the LDL receptor, and PCSK9; a secreted protein that degrades LDL receptors in liver. Surprisingly, we found that elimination of Srebf-2 in hepatocytes of mice also markedly reduced SREBP-1c and the expression of all genes involved in FA and triglyceride synthesis that are normally regulated by SREBP-1c. The nuclear receptor LXR is necessary for Srebf-1c transcription. The deletion of Srebf-2 and subsequent lower sterol synthesis in hepatocytes eliminated the production of an endogenous sterol ligand required for LXR activity and SREBP-1c expression. These studies demonstrate that cholesterol and FA synthesis in hepatocytes are coupled and that flux through the cholesterol biosynthetic pathway is required for maximal SREBP-1c expression and high rates of FA synthesis.

Article and author information

Author details

  1. Shunxing Rong

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Víctor A Cortés

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Shirya Rashid

    Department of Public Health, North South University, Dhaka, Bangladesh
    Competing interests
    The authors declare that no competing interests exist.
  4. Norma N Anderson

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jeffrey G McDonald

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Guosheng Liang

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Young-Ah Moon

    Department of Biomedical Sciences, Inha University College of Medicine, Inharo, Korea (South), Republic of
    Competing interests
    The authors declare that no competing interests exist.
  8. Robert E Hammer

    Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Jay D Horton

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    Jay.Horton@utsouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7778-1074

Funding

National Institutes of Health (HL-20948)

  • Jay D Horton

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were performed with approval of the Institutional Animal Care and Research Advisory Committee at UT Southwestern.

Copyright

© 2017, Rong et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,675
    views
  • 1,069
    downloads
  • 94
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shunxing Rong
  2. Víctor A Cortés
  3. Shirya Rashid
  4. Norma N Anderson
  5. Jeffrey G McDonald
  6. Guosheng Liang
  7. Young-Ah Moon
  8. Robert E Hammer
  9. Jay D Horton
(2017)
Expression of SREBP-1c requires SREBP-2-mediated generation of a sterol ligand for LXR in livers of mice
eLife 6:e25015.
https://doi.org/10.7554/eLife.25015

Share this article

https://doi.org/10.7554/eLife.25015

Further reading

    1. Evolutionary Biology
    2. Genetics and Genomics
    Giulia Ferraretti, Paolo Abondio ... Marco Sazzini
    Research Article

    It is well established that several Homo sapiens populations experienced admixture with extinct human species during their evolutionary history. Sometimes, such a gene flow could have played a role in modulating their capability to cope with a variety of selective pressures, thus resulting in archaic adaptive introgression events. A paradigmatic example of this evolutionary mechanism is offered by the EPAS1 gene, whose most frequent haplotype in Himalayan highlanders was proved to reduce their susceptibility to chronic mountain sickness and to be introduced in the gene pool of their ancestors by admixture with Denisovans. In this study, we aimed at further expanding the investigation of the impact of archaic introgression on more complex adaptive responses to hypobaric hypoxia evolved by populations of Tibetan/Sherpa ancestry, which have been plausibly mediated by soft selective sweeps and/or polygenic adaptations rather than by hard selective sweeps. For this purpose, we used a combination of composite-likelihood and gene network-based methods to detect adaptive loci in introgressed chromosomal segments from Tibetan WGS data and to shortlist those presenting Denisovan-like derived alleles that participate to the same functional pathways and are absent in populations of African ancestry, which are supposed to do not have experienced Denisovan admixture. According to this approach, we identified multiple genes putatively involved in archaic introgression events and that, especially as regards TBC1D1, RASGRF2, PRKAG2, and KRAS, have plausibly contributed to shape the adaptive modulation of angiogenesis and of certain cardiovascular traits in high-altitude Himalayan peoples. These findings provided unprecedented evidence about the complexity of the adaptive phenotype evolved by these human groups to cope with challenges imposed by hypobaric hypoxia, offering new insights into the tangled interplay of genetic determinants that mediates the physiological adjustments crucial for human adaptation to the high-altitude environment.

    1. Cancer Biology
    2. Genetics and Genomics
    Nicole S Arellano, Shannon E Elf
    Insight

    A new approach helps examine the proportion of cancerous and healthy stem cells in patients with chronic myeloid leukemia and how this influences treatment outcomes.