Expression of SREBP-1c requires SREBP-2-mediated generation of a sterol ligand for LXR in livers of mice

  1. Shunxing Rong
  2. Víctor A Cortés
  3. Shirya Rashid
  4. Norma N Anderson
  5. Jeffrey G McDonald
  6. Guosheng Liang
  7. Young-Ah Moon
  8. Robert E Hammer
  9. Jay D Horton  Is a corresponding author
  1. University of Texas Southwestern Medical Center, United States
  2. North South University, Bangladesh
  3. Inha University College of Medicine, Korea (South), Republic of

Abstract

The synthesis of cholesterol and fatty acids (FA) in liver is independently regulated by SREBP-2 and SREBP-1c, respectively. Here we genetically deleted Srebf-2 from hepatocytes and confirmed that SREBP-2 regulates all genes involved in cholesterol biosynthesis, the LDL receptor, and PCSK9; a secreted protein that degrades LDL receptors in liver. Surprisingly, we found that elimination of Srebf-2 in hepatocytes of mice also markedly reduced SREBP-1c and the expression of all genes involved in FA and triglyceride synthesis that are normally regulated by SREBP-1c. The nuclear receptor LXR is necessary for Srebf-1c transcription. The deletion of Srebf-2 and subsequent lower sterol synthesis in hepatocytes eliminated the production of an endogenous sterol ligand required for LXR activity and SREBP-1c expression. These studies demonstrate that cholesterol and FA synthesis in hepatocytes are coupled and that flux through the cholesterol biosynthetic pathway is required for maximal SREBP-1c expression and high rates of FA synthesis.

Article and author information

Author details

  1. Shunxing Rong

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Víctor A Cortés

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Shirya Rashid

    Department of Public Health, North South University, Dhaka, Bangladesh
    Competing interests
    The authors declare that no competing interests exist.
  4. Norma N Anderson

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jeffrey G McDonald

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Guosheng Liang

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Young-Ah Moon

    Department of Biomedical Sciences, Inha University College of Medicine, Inharo, Korea (South), Republic of
    Competing interests
    The authors declare that no competing interests exist.
  8. Robert E Hammer

    Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Jay D Horton

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    Jay.Horton@utsouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7778-1074

Funding

National Institutes of Health (HL-20948)

  • Jay D Horton

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were performed with approval of the Institutional Animal Care and Research Advisory Committee at UT Southwestern.

Copyright

© 2017, Rong et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,707
    views
  • 1,070
    downloads
  • 95
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shunxing Rong
  2. Víctor A Cortés
  3. Shirya Rashid
  4. Norma N Anderson
  5. Jeffrey G McDonald
  6. Guosheng Liang
  7. Young-Ah Moon
  8. Robert E Hammer
  9. Jay D Horton
(2017)
Expression of SREBP-1c requires SREBP-2-mediated generation of a sterol ligand for LXR in livers of mice
eLife 6:e25015.
https://doi.org/10.7554/eLife.25015

Share this article

https://doi.org/10.7554/eLife.25015

Further reading

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Stephanie Guillet, Tomi Lazarov ... Frédéric Geissmann
    Research Article

    Systemic lupus erythematosus (SLE) is an autoimmune disease, the pathophysiology and genetic basis of which are incompletely understood. Using a forward genetic screen in multiplex families with SLE, we identified an association between SLE and compound heterozygous deleterious variants in the non-receptor tyrosine kinases (NRTKs) ACK1 and BRK. Experimental blockade of ACK1 or BRK increased circulating autoantibodies in vivo in mice and exacerbated glomerular IgG deposits in an SLE mouse model. Mechanistically, NRTKs regulate activation, migration, and proliferation of immune cells. We found that the patients’ ACK1 and BRK variants impair efferocytosis, the MERTK-mediated anti-inflammatory response to apoptotic cells, in human induced pluripotent stem cell (hiPSC)-derived macrophages, which may contribute to SLE pathogenesis. Overall, our data suggest that ACK1 and BRK deficiencies are associated with human SLE and impair efferocytosis in macrophages.

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Dániel Molnár, Éva Viola Surányi ... Judit Toth
    Research Article

    The sustained success of Mycobacterium tuberculosis as a pathogen arises from its ability to persist within macrophages for extended periods and its limited responsiveness to antibiotics. Furthermore, the high incidence of resistance to the few available antituberculosis drugs is a significant concern, especially since the driving forces of the emergence of drug resistance are not clear. Drug-resistant strains of Mycobacterium tuberculosis can emerge through de novo mutations, however, mycobacterial mutation rates are low. To unravel the effects of antibiotic pressure on genome stability, we determined the genetic variability, phenotypic tolerance, DNA repair system activation, and dNTP pool upon treatment with current antibiotics using Mycobacterium smegmatis. Whole-genome sequencing revealed no significant increase in mutation rates after prolonged exposure to first-line antibiotics. However, the phenotypic fluctuation assay indicated rapid adaptation to antibiotics mediated by non-genetic factors. The upregulation of DNA repair genes, measured using qPCR, suggests that genomic integrity may be maintained through the activation of specific DNA repair pathways. Our results, indicating that antibiotic exposure does not result in de novo adaptive mutagenesis under laboratory conditions, do not lend support to the model suggesting antibiotic resistance development through drug pressure-induced microevolution.