Expression of SREBP-1c requires SREBP-2-mediated generation of a sterol ligand for LXR in livers of mice

  1. Shunxing Rong
  2. Víctor A Cortés
  3. Shirya Rashid
  4. Norma N Anderson
  5. Jeffrey G McDonald
  6. Guosheng Liang
  7. Young-Ah Moon
  8. Robert E Hammer
  9. Jay D Horton  Is a corresponding author
  1. University of Texas Southwestern Medical Center, United States
  2. North South University, Bangladesh
  3. Inha University College of Medicine, Korea (South), Republic of

Abstract

The synthesis of cholesterol and fatty acids (FA) in liver is independently regulated by SREBP-2 and SREBP-1c, respectively. Here we genetically deleted Srebf-2 from hepatocytes and confirmed that SREBP-2 regulates all genes involved in cholesterol biosynthesis, the LDL receptor, and PCSK9; a secreted protein that degrades LDL receptors in liver. Surprisingly, we found that elimination of Srebf-2 in hepatocytes of mice also markedly reduced SREBP-1c and the expression of all genes involved in FA and triglyceride synthesis that are normally regulated by SREBP-1c. The nuclear receptor LXR is necessary for Srebf-1c transcription. The deletion of Srebf-2 and subsequent lower sterol synthesis in hepatocytes eliminated the production of an endogenous sterol ligand required for LXR activity and SREBP-1c expression. These studies demonstrate that cholesterol and FA synthesis in hepatocytes are coupled and that flux through the cholesterol biosynthetic pathway is required for maximal SREBP-1c expression and high rates of FA synthesis.

Article and author information

Author details

  1. Shunxing Rong

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Víctor A Cortés

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Shirya Rashid

    Department of Public Health, North South University, Dhaka, Bangladesh
    Competing interests
    The authors declare that no competing interests exist.
  4. Norma N Anderson

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jeffrey G McDonald

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Guosheng Liang

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Young-Ah Moon

    Department of Biomedical Sciences, Inha University College of Medicine, Inharo, Korea (South), Republic of
    Competing interests
    The authors declare that no competing interests exist.
  8. Robert E Hammer

    Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Jay D Horton

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    Jay.Horton@utsouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7778-1074

Funding

National Institutes of Health (HL-20948)

  • Jay D Horton

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were performed with approval of the Institutional Animal Care and Research Advisory Committee at UT Southwestern.

Copyright

© 2017, Rong et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,595
    views
  • 1,063
    downloads
  • 93
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shunxing Rong
  2. Víctor A Cortés
  3. Shirya Rashid
  4. Norma N Anderson
  5. Jeffrey G McDonald
  6. Guosheng Liang
  7. Young-Ah Moon
  8. Robert E Hammer
  9. Jay D Horton
(2017)
Expression of SREBP-1c requires SREBP-2-mediated generation of a sterol ligand for LXR in livers of mice
eLife 6:e25015.
https://doi.org/10.7554/eLife.25015

Share this article

https://doi.org/10.7554/eLife.25015

Further reading

    1. Genetics and Genomics
    Wenjing Liu, Shujin Li ... Xianjun Zhu
    Research Article

    Familial exudative vitreoretinopathy (FEVR) is a severe genetic disorder characterized by incomplete vascularization of the peripheral retina and associated symptoms that can lead to vision loss. However, the underlying genetic causes of approximately 50% of FEVR cases remain unknown. Here, we report two heterozygous variants in calcyphosine-like gene (CAPSL) that is associated with FEVR. Both variants exhibited compromised CAPSL protein expression. Vascular endothelial cell (EC)-specific inactivation of Capsl resulted in delayed radial/vertical vascular progression, compromised endothelial proliferation/migration, recapitulating the human FEVR phenotypes. CAPSL-depleted human retinal microvascular endothelial cells (HRECs) exhibited impaired tube formation, decreased cell proliferation, disrupted cell polarity establishment, and filopodia/lamellipodia formation, as well as disrupted collective cell migration. Transcriptomic and proteomic profiling revealed that CAPSL abolition inhibited the MYC signaling axis, in which the expression of core MYC targeted genes were profoundly decreased. Furthermore, a combined analysis of CAPSL-depleted HRECs and c-MYC-depleted human umbilical vein endothelial cells uncovered similar transcription patterns. Collectively, this study reports a novel FEVR-associated candidate gene, CAPSL, which provides valuable information for genetic counseling of FEVR. This study also reveals that compromised CAPSL function may cause FEVR through MYC axis, shedding light on the potential involvement of MYC signaling in the pathogenesis of FEVR.

    1. Developmental Biology
    2. Genetics and Genomics
    Mitchell Bestry, Alexander N Larcombe ... David Martino
    Research Article

    Alcohol consumption in pregnancy can affect genome regulation in the developing offspring but results have been contradictory. We employed a physiologically relevant murine model of short-term moderate prenatal alcohol exposure (PAE) resembling common patterns of alcohol consumption in pregnancy in humans. Early moderate PAE was sufficient to affect site-specific DNA methylation in newborn pups without altering behavioural outcomes in adult littermates. Whole-genome bisulfite sequencing of neonatal brain and liver revealed stochastic influence on DNA methylation that was mostly tissue-specific, with some perturbations likely originating as early as gastrulation. DNA methylation differences were enriched in non-coding genomic regions with regulatory potential indicative of broad effects of alcohol on genome regulation. Replication studies in human cohorts with fetal alcohol spectrum disorder suggested some effects were metastable at genes linked to disease-relevant traits including facial morphology, intelligence, educational attainment, autism, and schizophrenia. In our murine model, a maternal diet high in folate and choline protected against some of the damaging effects of early moderate PAE on DNA methylation. Our studies demonstrate that early moderate exposure is sufficient to affect fetal genome regulation even in the absence of overt phenotypic changes and highlight a role for preventative maternal dietary interventions.