Chemical structure-guided design of dynapyrazoles, potent cell-permeable dynein inhibitors with a unique mode of action

  1. Jonathan Baruch Steinman
  2. Cristina C Santarossa
  3. Rand M Miller
  4. Lola S Yu
  5. Anna S Serpinskaya
  6. Hideki Furukawa
  7. Sachie Morimoto
  8. Yuta Tanaka
  9. Mitsuyoshi Nishitani
  10. Moriteru Asano
  11. Ruta Zalyte
  12. Alison E Ondrus
  13. Alex G Johnson
  14. Fan Ye
  15. Maxence V Nachury
  16. Yoshiyuki Fukase
  17. Kazuyoshi Aso
  18. Michael A Foley
  19. Vladimir I Gelfand
  20. James K Chen
  21. Andrew P Carter
  22. Tarun M Kapoor  Is a corresponding author
  1. Rockefeller University, United States
  2. Feinberg School of Medicine, Northwestern University, United States
  3. Tri-Institutitional Therapeutics Discovery Institute, United States
  4. Takeda Pharmaceuticals Ltd., Japan
  5. MRC Laboratory of Molecular Biology, United Kingdom
  6. California Institute of Technology, United States
  7. Stanford University, United States
  8. Stanford University School of Medicine, United States
  9. Northwestern University, United States

Abstract

Cytoplasmic dyneins are motor proteins in the AAA+ superfamily that power transport of cellular cargos towards microtubule minus-ends. Recently, ciliobrevins were reported as selective cell-permeable inhibitors of cytoplasmic dyneins. As is often true for first-in-class inhibitors, the use of ciliobrevins has been limited by low potency. Moreover, suboptimal chemical properties, such as the potential to isomerize, have hindered efforts to improve ciliobrevins. Here, we characterized the structure of ciliobrevins and designed conformationally-constrained isosteres. We identified dynapyrazoles, inhibitors more potent than ciliobrevins in vitro, and find that while ciliobrevins inhibit both dynein's microtubule-stimulated and basal ATPase activity, dynapyrazoles block only microtubule-stimulated activity. Single-digit micromolar concentrations of dynapyrazoles block intraflagellar transport in the cilium and lysosome motility in the cytoplasm, processes that depend on cytoplasmic dyneins. Together, our studies suggest that chemical structure-based analyses can lead to inhibitors with distinct modes of inhibition and improved properties.

Article and author information

Author details

  1. Jonathan Baruch Steinman

    Laboratory of Chemistry and Cell Biology, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Cristina C Santarossa

    Laboratory of Chemistry and Cell Biology, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Rand M Miller

    Laboratory of Chemistry and Cell Biology, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Lola S Yu

    Laboratory of Chemistry and Cell Biology, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Anna S Serpinskaya

    Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Hideki Furukawa

    Tri-Institutitional Therapeutics Discovery Institute, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Sachie Morimoto

    Tri-Institutitional Therapeutics Discovery Institute, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Yuta Tanaka

    Tri-Institutitional Therapeutics Discovery Institute, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Mitsuyoshi Nishitani

    Pharmaceutical Research Division, Takeda Pharmaceuticals Ltd., Kanagawa, Japan
    Competing interests
    The authors declare that no competing interests exist.
  10. Moriteru Asano

    Tri-Institutitional Therapeutics Discovery Institute, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Ruta Zalyte

    Division of Structural Studies, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Alison E Ondrus

    Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Alex G Johnson

    Chemical and Systems Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Fan Ye

    Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Maxence V Nachury

    Deptartment of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Yoshiyuki Fukase

    Tri-Institutitional Therapeutics Discovery Institute, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Kazuyoshi Aso

    Tri-Institutitional Therapeutics Discovery Institute, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Michael A Foley

    Tri-Institutitional Therapeutics Discovery Institute, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. Vladimir I Gelfand

    Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  20. James K Chen

    Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  21. Andrew P Carter

    Division of Structural Studies, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  22. Tarun M Kapoor

    Laboratory of Chemistry and Cell Biology, Rockefeller University, New York, United States
    For correspondence
    kapoor@rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0628-211X

Funding

National Institutes of Health (R01 GM098579)

  • Tarun M Kapoor

Robertson Therapeutic Development Fund

  • Tarun M Kapoor

Damon Runyon Cancer Research Foundation (DRG-2222-15)

  • Rand M Miller

Medical Research Council (MC_UP_A025_1011)

  • Andrew P Carter

National Institutes of Health (T32GM007739)

  • Jonathan Baruch Steinman

National Institutes of Health (R01 GM52111)

  • Vladimir I Gelfand

National Institutes of Health (R01 GM113100)

  • James K Chen

Wellcome (WT100387)

  • Andrew P Carter

National Institutes of Health (R01 GM089933)

  • Maxence V Nachury

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Steinman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,382
    views
  • 713
    downloads
  • 36
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jonathan Baruch Steinman
  2. Cristina C Santarossa
  3. Rand M Miller
  4. Lola S Yu
  5. Anna S Serpinskaya
  6. Hideki Furukawa
  7. Sachie Morimoto
  8. Yuta Tanaka
  9. Mitsuyoshi Nishitani
  10. Moriteru Asano
  11. Ruta Zalyte
  12. Alison E Ondrus
  13. Alex G Johnson
  14. Fan Ye
  15. Maxence V Nachury
  16. Yoshiyuki Fukase
  17. Kazuyoshi Aso
  18. Michael A Foley
  19. Vladimir I Gelfand
  20. James K Chen
  21. Andrew P Carter
  22. Tarun M Kapoor
(2017)
Chemical structure-guided design of dynapyrazoles, potent cell-permeable dynein inhibitors with a unique mode of action
eLife 6:e25174.
https://doi.org/10.7554/eLife.25174

Share this article

https://doi.org/10.7554/eLife.25174

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Mai Nguyen, Elda Bauda ... Cecile Morlot
    Research Article

    Teichoic acids (TA) are linear phospho-saccharidic polymers and important constituents of the cell envelope of Gram-positive bacteria, either bound to the peptidoglycan as wall teichoic acids (WTA) or to the membrane as lipoteichoic acids (LTA). The composition of TA varies greatly but the presence of both WTA and LTA is highly conserved, hinting at an underlying fundamental function that is distinct from their specific roles in diverse organisms. We report the observation of a periplasmic space in Streptococcus pneumoniae by cryo-electron microscopy of vitreous sections. The thickness and appearance of this region change upon deletion of genes involved in the attachment of TA, supporting their role in the maintenance of a periplasmic space in Gram-positive bacteria as a possible universal function. Consequences of these mutations were further examined by super-resolved microscopy, following metabolic labeling and fluorophore coupling by click chemistry. This novel labeling method also enabled in-gel analysis of cell fractions. With this approach, we were able to titrate the actual amount of TA per cell and to determine the ratio of WTA to LTA. In addition, we followed the change of TA length during growth phases, and discovered that a mutant devoid of LTA accumulates the membrane-bound polymerized TA precursor.

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Shinichi Kawaguchi, Xin Xu ... Toshie Kai
    Research Article

    Protein–protein interactions are fundamental to understanding the molecular functions and regulation of proteins. Despite the availability of extensive databases, many interactions remain uncharacterized due to the labor-intensive nature of experimental validation. In this study, we utilized the AlphaFold2 program to predict interactions among proteins localized in the nuage, a germline-specific non-membrane organelle essential for piRNA biogenesis in Drosophila. We screened 20 nuage proteins for 1:1 interactions and predicted dimer structures. Among these, five represented novel interaction candidates. Three pairs, including Spn-E_Squ, were verified by co-immunoprecipitation. Disruption of the salt bridges at the Spn-E_Squ interface confirmed their functional importance, underscoring the predictive model’s accuracy. We extended our analysis to include interactions between three representative nuage components—Vas, Squ, and Tej—and approximately 430 oogenesis-related proteins. Co-immunoprecipitation verified interactions for three pairs: Mei-W68_Squ, CSN3_Squ, and Pka-C1_Tej. Furthermore, we screened the majority of Drosophila proteins (~12,000) for potential interaction with the Piwi protein, a central player in the piRNA pathway, identifying 164 pairs as potential binding partners. This in silico approach not only efficiently identifies potential interaction partners but also significantly bridges the gap by facilitating the integration of bioinformatics and experimental biology.