Chemical structure-guided design of dynapyrazoles, potent cell-permeable dynein inhibitors with a unique mode of action

  1. Jonathan Baruch Steinman
  2. Cristina C Santarossa
  3. Rand M Miller
  4. Lola S Yu
  5. Anna S Serpinskaya
  6. Hideki Furukawa
  7. Sachie Morimoto
  8. Yuta Tanaka
  9. Mitsuyoshi Nishitani
  10. Moriteru Asano
  11. Ruta Zalyte
  12. Alison E Ondrus
  13. Alex G Johnson
  14. Fan Ye
  15. Maxence V Nachury
  16. Yoshiyuki Fukase
  17. Kazuyoshi Aso
  18. Michael A Foley
  19. Vladimir I Gelfand
  20. James K Chen
  21. Andrew P Carter
  22. Tarun M Kapoor  Is a corresponding author
  1. Rockefeller University, United States
  2. Feinberg School of Medicine, Northwestern University, United States
  3. Tri-Institutitional Therapeutics Discovery Institute, United States
  4. Takeda Pharmaceuticals Ltd., Japan
  5. MRC Laboratory of Molecular Biology, United Kingdom
  6. California Institute of Technology, United States
  7. Stanford University, United States
  8. Stanford University School of Medicine, United States
  9. Northwestern University, United States

Abstract

Cytoplasmic dyneins are motor proteins in the AAA+ superfamily that power transport of cellular cargos towards microtubule minus-ends. Recently, ciliobrevins were reported as selective cell-permeable inhibitors of cytoplasmic dyneins. As is often true for first-in-class inhibitors, the use of ciliobrevins has been limited by low potency. Moreover, suboptimal chemical properties, such as the potential to isomerize, have hindered efforts to improve ciliobrevins. Here, we characterized the structure of ciliobrevins and designed conformationally-constrained isosteres. We identified dynapyrazoles, inhibitors more potent than ciliobrevins in vitro, and find that while ciliobrevins inhibit both dynein's microtubule-stimulated and basal ATPase activity, dynapyrazoles block only microtubule-stimulated activity. Single-digit micromolar concentrations of dynapyrazoles block intraflagellar transport in the cilium and lysosome motility in the cytoplasm, processes that depend on cytoplasmic dyneins. Together, our studies suggest that chemical structure-based analyses can lead to inhibitors with distinct modes of inhibition and improved properties.

Article and author information

Author details

  1. Jonathan Baruch Steinman

    Laboratory of Chemistry and Cell Biology, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Cristina C Santarossa

    Laboratory of Chemistry and Cell Biology, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Rand M Miller

    Laboratory of Chemistry and Cell Biology, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Lola S Yu

    Laboratory of Chemistry and Cell Biology, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Anna S Serpinskaya

    Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Hideki Furukawa

    Tri-Institutitional Therapeutics Discovery Institute, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Sachie Morimoto

    Tri-Institutitional Therapeutics Discovery Institute, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Yuta Tanaka

    Tri-Institutitional Therapeutics Discovery Institute, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Mitsuyoshi Nishitani

    Pharmaceutical Research Division, Takeda Pharmaceuticals Ltd., Kanagawa, Japan
    Competing interests
    The authors declare that no competing interests exist.
  10. Moriteru Asano

    Tri-Institutitional Therapeutics Discovery Institute, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Ruta Zalyte

    Division of Structural Studies, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Alison E Ondrus

    Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Alex G Johnson

    Chemical and Systems Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Fan Ye

    Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Maxence V Nachury

    Deptartment of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Yoshiyuki Fukase

    Tri-Institutitional Therapeutics Discovery Institute, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Kazuyoshi Aso

    Tri-Institutitional Therapeutics Discovery Institute, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Michael A Foley

    Tri-Institutitional Therapeutics Discovery Institute, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. Vladimir I Gelfand

    Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  20. James K Chen

    Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  21. Andrew P Carter

    Division of Structural Studies, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  22. Tarun M Kapoor

    Laboratory of Chemistry and Cell Biology, Rockefeller University, New York, United States
    For correspondence
    kapoor@rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0628-211X

Funding

National Institutes of Health (R01 GM098579)

  • Tarun M Kapoor

Robertson Therapeutic Development Fund

  • Tarun M Kapoor

Damon Runyon Cancer Research Foundation (DRG-2222-15)

  • Rand M Miller

Medical Research Council (MC_UP_A025_1011)

  • Andrew P Carter

National Institutes of Health (T32GM007739)

  • Jonathan Baruch Steinman

National Institutes of Health (R01 GM52111)

  • Vladimir I Gelfand

National Institutes of Health (R01 GM113100)

  • James K Chen

Wellcome (WT100387)

  • Andrew P Carter

National Institutes of Health (R01 GM089933)

  • Maxence V Nachury

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Wilfred A van der Donk, University of Illinois at Urbana-Champaign, United States

Version history

  1. Received: January 20, 2017
  2. Accepted: May 17, 2017
  3. Accepted Manuscript published: May 19, 2017 (version 1)
  4. Version of Record published: June 20, 2017 (version 2)

Copyright

© 2017, Steinman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,266
    views
  • 703
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jonathan Baruch Steinman
  2. Cristina C Santarossa
  3. Rand M Miller
  4. Lola S Yu
  5. Anna S Serpinskaya
  6. Hideki Furukawa
  7. Sachie Morimoto
  8. Yuta Tanaka
  9. Mitsuyoshi Nishitani
  10. Moriteru Asano
  11. Ruta Zalyte
  12. Alison E Ondrus
  13. Alex G Johnson
  14. Fan Ye
  15. Maxence V Nachury
  16. Yoshiyuki Fukase
  17. Kazuyoshi Aso
  18. Michael A Foley
  19. Vladimir I Gelfand
  20. James K Chen
  21. Andrew P Carter
  22. Tarun M Kapoor
(2017)
Chemical structure-guided design of dynapyrazoles, potent cell-permeable dynein inhibitors with a unique mode of action
eLife 6:e25174.
https://doi.org/10.7554/eLife.25174

Share this article

https://doi.org/10.7554/eLife.25174

Further reading

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ramona Weber, Chung-Te Chang
    Research Article

    Recent findings indicate that the translation elongation rate influences mRNA stability. One of the factors that has been implicated in this link between mRNA decay and translation speed is the yeast DEAD-box helicase Dhh1p. Here, we demonstrated that the human ortholog of Dhh1p, DDX6, triggers the deadenylation-dependent decay of inefficiently translated mRNAs in human cells. DDX6 interacts with the ribosome through the Phe-Asp-Phe (FDF) motif in its RecA2 domain. Furthermore, RecA2-mediated interactions and ATPase activity are both required for DDX6 to destabilize inefficiently translated mRNAs. Using ribosome profiling and RNA sequencing, we identified two classes of endogenous mRNAs that are regulated in a DDX6-dependent manner. The identified targets are either translationally regulated or regulated at the steady-state-level and either exhibit signatures of poor overall translation or of locally reduced ribosome translocation rates. Transferring the identified sequence stretches into a reporter mRNA caused translation- and DDX6-dependent degradation of the reporter mRNA. In summary, these results identify DDX6 as a crucial regulator of mRNA translation and decay triggered by slow ribosome movement and provide insights into the mechanism by which DDX6 destabilizes inefficiently translated mRNAs.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Amy H Andreotti, Volker Dötsch
    Editorial

    The articles in this special issue highlight how modern cellular, biochemical, biophysical and computational techniques are allowing deeper and more detailed studies of allosteric kinase regulation.