1. Biochemistry and Chemical Biology
Download icon

Chemical structure-guided design of dynapyrazoles, potent cell-permeable dynein inhibitors with a unique mode of action

  1. Jonathan Baruch Steinman
  2. Cristina C Santarossa
  3. Rand M Miller
  4. Lola S Yu
  5. Anna S Serpinskaya
  6. Hideki Furukawa
  7. Sachie Morimoto
  8. Yuta Tanaka
  9. Mitsuyoshi Nishitani
  10. Moriteru Asano
  11. Ruta Zalyte
  12. Alison E Ondrus
  13. Alex G Johnson
  14. Fan Ye
  15. Maxence V Nachury
  16. Yoshiyuki Fukase
  17. Kazuyoshi Aso
  18. Michael A Foley
  19. Vladimir I Gelfand
  20. James K Chen
  21. Andrew P Carter
  22. Tarun M Kapoor  Is a corresponding author
  1. Rockefeller University, United States
  2. Feinberg School of Medicine, Northwestern University, United States
  3. Tri-Institutitional Therapeutics Discovery Institute, United States
  4. Takeda Pharmaceuticals Ltd., Japan
  5. MRC Laboratory of Molecular Biology, United Kingdom
  6. California Institute of Technology, United States
  7. Stanford University, United States
  8. Stanford University School of Medicine, United States
  9. Northwestern University, United States
Research Article
  • Cited 7
  • Views 3,199
  • Annotations
Cite this article as: eLife 2017;6:e25174 doi: 10.7554/eLife.25174

Abstract

Cytoplasmic dyneins are motor proteins in the AAA+ superfamily that power transport of cellular cargos towards microtubule minus-ends. Recently, ciliobrevins were reported as selective cell-permeable inhibitors of cytoplasmic dyneins. As is often true for first-in-class inhibitors, the use of ciliobrevins has been limited by low potency. Moreover, suboptimal chemical properties, such as the potential to isomerize, have hindered efforts to improve ciliobrevins. Here, we characterized the structure of ciliobrevins and designed conformationally-constrained isosteres. We identified dynapyrazoles, inhibitors more potent than ciliobrevins in vitro, and find that while ciliobrevins inhibit both dynein's microtubule-stimulated and basal ATPase activity, dynapyrazoles block only microtubule-stimulated activity. Single-digit micromolar concentrations of dynapyrazoles block intraflagellar transport in the cilium and lysosome motility in the cytoplasm, processes that depend on cytoplasmic dyneins. Together, our studies suggest that chemical structure-based analyses can lead to inhibitors with distinct modes of inhibition and improved properties.

Article and author information

Author details

  1. Jonathan Baruch Steinman

    Laboratory of Chemistry and Cell Biology, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Cristina C Santarossa

    Laboratory of Chemistry and Cell Biology, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Rand M Miller

    Laboratory of Chemistry and Cell Biology, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Lola S Yu

    Laboratory of Chemistry and Cell Biology, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Anna S Serpinskaya

    Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Hideki Furukawa

    Tri-Institutitional Therapeutics Discovery Institute, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Sachie Morimoto

    Tri-Institutitional Therapeutics Discovery Institute, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Yuta Tanaka

    Tri-Institutitional Therapeutics Discovery Institute, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Mitsuyoshi Nishitani

    Pharmaceutical Research Division, Takeda Pharmaceuticals Ltd., Kanagawa, Japan
    Competing interests
    The authors declare that no competing interests exist.
  10. Moriteru Asano

    Tri-Institutitional Therapeutics Discovery Institute, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Ruta Zalyte

    Division of Structural Studies, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Alison E Ondrus

    Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Alex G Johnson

    Chemical and Systems Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Fan Ye

    Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Maxence V Nachury

    Deptartment of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Yoshiyuki Fukase

    Tri-Institutitional Therapeutics Discovery Institute, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Kazuyoshi Aso

    Tri-Institutitional Therapeutics Discovery Institute, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Michael A Foley

    Tri-Institutitional Therapeutics Discovery Institute, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. Vladimir I Gelfand

    Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  20. James K Chen

    Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  21. Andrew P Carter

    Division of Structural Studies, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  22. Tarun M Kapoor

    Laboratory of Chemistry and Cell Biology, Rockefeller University, New York, United States
    For correspondence
    kapoor@rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0628-211X

Funding

National Institutes of Health (R01 GM098579)

  • Tarun M Kapoor

Robertson Therapeutic Development Fund

  • Tarun M Kapoor

Damon Runyon Cancer Research Foundation (DRG-2222-15)

  • Rand M Miller

Medical Research Council (MC_UP_A025_1011)

  • Andrew P Carter

National Institutes of Health (T32GM007739)

  • Jonathan Baruch Steinman

National Institutes of Health (R01 GM52111)

  • Vladimir I Gelfand

National Institutes of Health (R01 GM113100)

  • James K Chen

Wellcome (WT100387)

  • Andrew P Carter

National Institutes of Health (R01 GM089933)

  • Maxence V Nachury

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Wilfred A van der Donk, University of Illinois at Urbana-Champaign, United States

Publication history

  1. Received: January 20, 2017
  2. Accepted: May 17, 2017
  3. Accepted Manuscript published: May 19, 2017 (version 1)
  4. Version of Record published: June 20, 2017 (version 2)

Copyright

© 2017, Steinman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,199
    Page views
  • 600
    Downloads
  • 7
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Bishnu P Paudel et al.
    Research Article Updated

    Telomeric G-quadruplexes (G4) were long believed to form a protective structure at telomeres, preventing their extension by the ribonucleoprotein telomerase. Contrary to this belief, we have previously demonstrated that parallel-stranded conformations of telomeric G4 can be extended by human and ciliate telomerase. However, a mechanistic understanding of the interaction of telomerase with structured DNA remained elusive. Here, we use single-molecule fluorescence resonance energy transfer (smFRET) microscopy and bulk-phase enzymology to propose a mechanism for the resolution and extension of parallel G4 by telomerase. Binding is initiated by the RNA template of telomerase interacting with the G-quadruplex; nucleotide addition then proceeds to the end of the RNA template. It is only through the large conformational change of translocation following synthesis that the G-quadruplex structure is completely unfolded to a linear product. Surprisingly, parallel G4 stabilization with either small molecule ligands or by chemical modification does not always inhibit G4 unfolding and extension by telomerase. These data reveal that telomerase is a parallel G-quadruplex resolvase.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Xiaoshan Shi et al.
    Research Article

    The selective autophagy pathways of xenophagy and mitophagy are initiated when the adaptor NDP52 recruits the ULK1 complex to autophagic cargo. Hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) was used to map the membrane and NDP52 binding sites of the ULK1 complex to unique regions of the coiled coil of the FIP200 subunit. Electron microscopy of the full-length ULK1 complex shows that the FIP200 coiled coil projects away from the crescent-shaped FIP200 N-terminal domain dimer. NDP52 allosterically stimulates membrane-binding by FIP200 and the ULK1 complex by promoting a more dynamic conformation of the membrane-binding portion of the FIP200 coiled coil. Giant unilamellar vesicle (GUV) reconstitution confirmed that membrane recruitment by the ULK1 complex is triggered by NDP52 engagement. These data reveal how the allosteric linkage between NDP52 and the ULK1 complex could drive the first membrane recruitment event of phagophore biogenesis in xenophagy and mitophagy.