HIF-1α is required for disturbed flow-induced metabolic reprogramming in human and porcine vascular endothelium

  1. David Wu
  2. Ru-Ting Huang
  3. Robert B Hamanaka
  4. Matthew D Krause
  5. Myung-Jin Oh
  6. Cheng-Hsiang Kuo
  7. Recep Nigdelioglu
  8. Angelo Y Meliton
  9. Leah Witt
  10. Guohao Dai
  11. Mete Civelek
  12. Nanduri R Prabhakar
  13. Yun Fang  Is a corresponding author
  14. Gökhan M Mutlu  Is a corresponding author
  1. The University of Chicago, United States
  2. Northeastern University, United States
  3. University of Virginia, United States

Abstract

Hemodynamic forces regulate vascular functions. Disturbed flow (DF) occurs in arterial bifurcations and curvatures, activates endothelial cells (ECs), and results in vascular inflammation and ultimately atherosclerosis. However, how DF alters EC metabolism, and whether resulting metabolic changes induce EC activation, is unknown. Using transcriptomics and bioenergetic analysis, we discovered that DF induces glycolysis and reduces mitochondrial respiratory capacity in human aortic ECs. DF-induced metabolic reprogramming required hypoxia inducible factor-1α (HIF-1α), downstream of NAD(P)H oxidase-4 (NOX4)-derived reactive oxygen species (ROS). HIF-1α increased glycolytic enzymes and pyruvate dehydrogenase kinase-1 (PDK-1), which reduces mitochondrial respiratory capacity. Swine aortic arch endothelia exhibited elevated ROS, NOX4, HIF-1α, and glycolytic enzyme and PDK1 expression, suggesting that DF leads to metabolic reprogramming in vivo. Inhibition of glycolysis reduced inflammation suggesting a causal relationship between flow-induced metabolic changes and EC activation. These findings highlight a previously uncharacterized role for flow-induced metabolic reprogramming and inflammation in ECs.

Data availability

The following data sets were generated

Article and author information

Author details

  1. David Wu

    Department of Medicine, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3162-3238
  2. Ru-Ting Huang

    Department of Medicine, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Robert B Hamanaka

    Department of Medicine, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8909-356X
  4. Matthew D Krause

    Department of Medicine, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Myung-Jin Oh

    Department of Medicine, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Cheng-Hsiang Kuo

    Department of Medicine, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4885-9020
  7. Recep Nigdelioglu

    Department of Medicine, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Angelo Y Meliton

    Department of Medicine, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Leah Witt

    Department of Medicine, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Guohao Dai

    Department of Bioengineering, Northeastern University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Mete Civelek

    Department of Biomedical Engineering, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Nanduri R Prabhakar

    Institute for Integrative Physiology, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Yun Fang

    Department of Medicine, The University of Chicago, Chicago, United States
    For correspondence
    yfang1@medicine.bsd.uchicago.edu
    Competing interests
    The authors declare that no competing interests exist.
  14. Gökhan M Mutlu

    Department of Medicine, The University of Chicago, Chicago, United States
    For correspondence
    gmutlu@medicine.bsd.uchicago.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2056-612X

Funding

National Institutes of Health (T32HL007605)

  • David Wu
  • Myung-Jin Oh

American Heart Association (15POST255900003)

  • Recep Nigdelioglu

National Institutes of Health (F32HL134288)

  • David Wu

National Institutes of Health (R21ES025644)

  • Gökhan M Mutlu

National Institutes of Health (K01AR066579)

  • Robert B Hamanaka

National Institutes of Health (R01ES015024)

  • Gökhan M Mutlu

National Institutes of Health (P01HL090554)

  • Nanduri R Prabhakar

National Institutes of Health (R00HL103789)

  • Yun Fang

American Heart Association (BGIA7080012)

  • Yun Fang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kari Alitalo, University of Helsinki, Finland

Ethics

Animal experimentation: All procedures were in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The use of vertebrate animal tissues was approved by the Animal Care and Use Committee of the University of Chicago (Permit # 72281). The use of vertebrate animal tissues obtained from outside the University of Chicago was approved by the Animal Care and Use Committee of the University of Chicago (Permit # 72500).

Version history

  1. Received: January 17, 2017
  2. Accepted: May 26, 2017
  3. Accepted Manuscript published: May 30, 2017 (version 1)
  4. Version of Record published: July 3, 2017 (version 2)

Copyright

© 2017, Wu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,813
    views
  • 699
    downloads
  • 120
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David Wu
  2. Ru-Ting Huang
  3. Robert B Hamanaka
  4. Matthew D Krause
  5. Myung-Jin Oh
  6. Cheng-Hsiang Kuo
  7. Recep Nigdelioglu
  8. Angelo Y Meliton
  9. Leah Witt
  10. Guohao Dai
  11. Mete Civelek
  12. Nanduri R Prabhakar
  13. Yun Fang
  14. Gökhan M Mutlu
(2017)
HIF-1α is required for disturbed flow-induced metabolic reprogramming in human and porcine vascular endothelium
eLife 6:e25217.
https://doi.org/10.7554/eLife.25217

Share this article

https://doi.org/10.7554/eLife.25217

Further reading

    1. Cell Biology
    Ruichen Yang, Hongshang Chu ... Baojie Li
    Research Article

    Elastic cartilage constitutes a major component of the external ear, which functions to guide sound to the middle and inner ears. Defects in auricle development cause congenital microtia, which affects hearing and appearance in patients. Mutations in several genes have been implicated in microtia development, yet, the pathogenesis of this disorder remains incompletely understood. Here, we show that Prrx1 genetically marks auricular chondrocytes in adult mice. Interestingly, BMP-Smad1/5/9 signaling in chondrocytes is increasingly activated from the proximal to distal segments of the ear, which is associated with a decrease in chondrocyte regenerative activity. Ablation of Bmpr1a in auricular chondrocytes led to chondrocyte atrophy and microtia development at the distal part. Transcriptome analysis revealed that Bmpr1a deficiency caused a switch from the chondrogenic program to the osteogenic program, accompanied by enhanced protein kinase A activation, likely through increased expression of Adcy5/8. Inhibition of PKA blocked chondrocyte-to-osteoblast transformation and microtia development. Moreover, analysis of single-cell RNA-seq of human microtia samples uncovered enriched gene expression in the PKA pathway and chondrocyte-to-osteoblast transformation process. These findings suggest that auricle cartilage is actively maintained by BMP signaling, which maintains chondrocyte identity by suppressing osteogenic differentiation.

    1. Cancer Biology
    2. Cell Biology
    Timothy J Walker, Eduardo Reyes-Alvarez ... Lois M Mulligan
    Research Article

    Internalization from the cell membrane and endosomal trafficking of receptor tyrosine kinases (RTKs) are important regulators of signaling in normal cells that can frequently be disrupted in cancer. The adrenal tumor pheochromocytoma (PCC) can be caused by activating mutations of the rearranged during transfection (RET) receptor tyrosine kinase, or inactivation of TMEM127, a transmembrane tumor suppressor implicated in trafficking of endosomal cargos. However, the role of aberrant receptor trafficking in PCC is not well understood. Here, we show that loss of TMEM127 causes wildtype RET protein accumulation on the cell surface, where increased receptor density facilitates constitutive ligand-independent activity and downstream signaling, driving cell proliferation. Loss of TMEM127 altered normal cell membrane organization and recruitment and stabilization of membrane protein complexes, impaired assembly, and maturation of clathrin-coated pits, and reduced internalization and degradation of cell surface RET. In addition to RTKs, TMEM127 depletion also promoted surface accumulation of several other transmembrane proteins, suggesting it may cause global defects in surface protein activity and function. Together, our data identify TMEM127 as an important determinant of membrane organization including membrane protein diffusability and protein complex assembly and provide a novel paradigm for oncogenesis in PCC where altered membrane dynamics promotes cell surface accumulation and constitutive activity of growth factor receptors to drive aberrant signaling and promote transformation.