HIF-1α is required for disturbed flow-induced metabolic reprogramming in human and porcine vascular endothelium

  1. David Wu
  2. Ru-Ting Huang
  3. Robert B Hamanaka
  4. Matthew D Krause
  5. Myung-Jin Oh
  6. Cheng-Hsiang Kuo
  7. Recep Nigdelioglu
  8. Angelo Y Meliton
  9. Leah Witt
  10. Guohao Dai
  11. Mete Civelek
  12. Nanduri R Prabhakar
  13. Yun Fang  Is a corresponding author
  14. Gökhan M Mutlu  Is a corresponding author
  1. The University of Chicago, United States
  2. Northeastern University, United States
  3. University of Virginia, United States

Abstract

Hemodynamic forces regulate vascular functions. Disturbed flow (DF) occurs in arterial bifurcations and curvatures, activates endothelial cells (ECs), and results in vascular inflammation and ultimately atherosclerosis. However, how DF alters EC metabolism, and whether resulting metabolic changes induce EC activation, is unknown. Using transcriptomics and bioenergetic analysis, we discovered that DF induces glycolysis and reduces mitochondrial respiratory capacity in human aortic ECs. DF-induced metabolic reprogramming required hypoxia inducible factor-1α (HIF-1α), downstream of NAD(P)H oxidase-4 (NOX4)-derived reactive oxygen species (ROS). HIF-1α increased glycolytic enzymes and pyruvate dehydrogenase kinase-1 (PDK-1), which reduces mitochondrial respiratory capacity. Swine aortic arch endothelia exhibited elevated ROS, NOX4, HIF-1α, and glycolytic enzyme and PDK1 expression, suggesting that DF leads to metabolic reprogramming in vivo. Inhibition of glycolysis reduced inflammation suggesting a causal relationship between flow-induced metabolic changes and EC activation. These findings highlight a previously uncharacterized role for flow-induced metabolic reprogramming and inflammation in ECs.

Data availability

The following data sets were generated

Article and author information

Author details

  1. David Wu

    Department of Medicine, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3162-3238
  2. Ru-Ting Huang

    Department of Medicine, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Robert B Hamanaka

    Department of Medicine, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8909-356X
  4. Matthew D Krause

    Department of Medicine, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Myung-Jin Oh

    Department of Medicine, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Cheng-Hsiang Kuo

    Department of Medicine, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4885-9020
  7. Recep Nigdelioglu

    Department of Medicine, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Angelo Y Meliton

    Department of Medicine, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Leah Witt

    Department of Medicine, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Guohao Dai

    Department of Bioengineering, Northeastern University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Mete Civelek

    Department of Biomedical Engineering, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Nanduri R Prabhakar

    Institute for Integrative Physiology, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Yun Fang

    Department of Medicine, The University of Chicago, Chicago, United States
    For correspondence
    yfang1@medicine.bsd.uchicago.edu
    Competing interests
    The authors declare that no competing interests exist.
  14. Gökhan M Mutlu

    Department of Medicine, The University of Chicago, Chicago, United States
    For correspondence
    gmutlu@medicine.bsd.uchicago.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2056-612X

Funding

National Institutes of Health (T32HL007605)

  • David Wu
  • Myung-Jin Oh

American Heart Association (15POST255900003)

  • Recep Nigdelioglu

National Institutes of Health (F32HL134288)

  • David Wu

National Institutes of Health (R21ES025644)

  • Gökhan M Mutlu

National Institutes of Health (K01AR066579)

  • Robert B Hamanaka

National Institutes of Health (R01ES015024)

  • Gökhan M Mutlu

National Institutes of Health (P01HL090554)

  • Nanduri R Prabhakar

National Institutes of Health (R00HL103789)

  • Yun Fang

American Heart Association (BGIA7080012)

  • Yun Fang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The use of vertebrate animal tissues was approved by the Animal Care and Use Committee of the University of Chicago (Permit # 72281). The use of vertebrate animal tissues obtained from outside the University of Chicago was approved by the Animal Care and Use Committee of the University of Chicago (Permit # 72500).

Copyright

© 2017, Wu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,104
    views
  • 735
    downloads
  • 146
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David Wu
  2. Ru-Ting Huang
  3. Robert B Hamanaka
  4. Matthew D Krause
  5. Myung-Jin Oh
  6. Cheng-Hsiang Kuo
  7. Recep Nigdelioglu
  8. Angelo Y Meliton
  9. Leah Witt
  10. Guohao Dai
  11. Mete Civelek
  12. Nanduri R Prabhakar
  13. Yun Fang
  14. Gökhan M Mutlu
(2017)
HIF-1α is required for disturbed flow-induced metabolic reprogramming in human and porcine vascular endothelium
eLife 6:e25217.
https://doi.org/10.7554/eLife.25217

Share this article

https://doi.org/10.7554/eLife.25217

Further reading

    1. Cell Biology
    Kaili Du, Hongyu Chen ... Dan Li
    Research Article

    Niemann–Pick disease type C (NPC) is a devastating lysosomal storage disease characterized by abnormal cholesterol accumulation in lysosomes. Currently, there is no treatment for NPC. Transcription factor EB (TFEB), a member of the microphthalmia transcription factors (MiTF), has emerged as a master regulator of lysosomal function and promoted the clearance of substrates stored in cells. However, it is not known whether TFEB plays a role in cholesterol clearance in NPC disease. Here, we show that transgenic overexpression of TFEB, but not TFE3 (another member of MiTF family) facilitates cholesterol clearance in various NPC1 cell models. Pharmacological activation of TFEB by sulforaphane (SFN), a previously identified natural small-molecule TFEB agonist by us, can dramatically ameliorate cholesterol accumulation in human and mouse NPC1 cell models. In NPC1 cells, SFN induces TFEB nuclear translocation via a ROS-Ca2+-calcineurin-dependent but MTOR-independent pathway and upregulates the expression of TFEB-downstream genes, promoting lysosomal exocytosis and biogenesis. While genetic inhibition of TFEB abolishes the cholesterol clearance and exocytosis effect by SFN. In the NPC1 mouse model, SFN dephosphorylates/activates TFEB in the brain and exhibits potent efficacy of rescuing the loss of Purkinje cells and body weight. Hence, pharmacological upregulating lysosome machinery via targeting TFEB represents a promising approach to treat NPC and related lysosomal storage diseases, and provides the possibility of TFEB agonists, that is, SFN as potential NPC therapeutic candidates.

    1. Cell Biology
    2. Developmental Biology
    Sarah Y Coomson, Salil A Lachke
    Insight

    A study in mice reveals key interactions between proteins involved in fibroblast growth factor signaling and how they contribute to distinct stages of eye lens development.