HIF-1α is required for disturbed flow-induced metabolic reprogramming in human and porcine vascular endothelium

  1. David Wu
  2. Ru-Ting Huang
  3. Robert B Hamanaka
  4. Matthew D Krause
  5. Myung-Jin Oh
  6. Cheng-Hsiang Kuo
  7. Recep Nigdelioglu
  8. Angelo Y Meliton
  9. Leah Witt
  10. Guohao Dai
  11. Mete Civelek
  12. Nanduri R Prabhakar
  13. Yun Fang  Is a corresponding author
  14. Gökhan M Mutlu  Is a corresponding author
  1. The University of Chicago, United States
  2. Northeastern University, United States
  3. University of Virginia, United States

Abstract

Hemodynamic forces regulate vascular functions. Disturbed flow (DF) occurs in arterial bifurcations and curvatures, activates endothelial cells (ECs), and results in vascular inflammation and ultimately atherosclerosis. However, how DF alters EC metabolism, and whether resulting metabolic changes induce EC activation, is unknown. Using transcriptomics and bioenergetic analysis, we discovered that DF induces glycolysis and reduces mitochondrial respiratory capacity in human aortic ECs. DF-induced metabolic reprogramming required hypoxia inducible factor-1α (HIF-1α), downstream of NAD(P)H oxidase-4 (NOX4)-derived reactive oxygen species (ROS). HIF-1α increased glycolytic enzymes and pyruvate dehydrogenase kinase-1 (PDK-1), which reduces mitochondrial respiratory capacity. Swine aortic arch endothelia exhibited elevated ROS, NOX4, HIF-1α, and glycolytic enzyme and PDK1 expression, suggesting that DF leads to metabolic reprogramming in vivo. Inhibition of glycolysis reduced inflammation suggesting a causal relationship between flow-induced metabolic changes and EC activation. These findings highlight a previously uncharacterized role for flow-induced metabolic reprogramming and inflammation in ECs.

Data availability

The following data sets were generated

Article and author information

Author details

  1. David Wu

    Department of Medicine, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3162-3238
  2. Ru-Ting Huang

    Department of Medicine, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Robert B Hamanaka

    Department of Medicine, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8909-356X
  4. Matthew D Krause

    Department of Medicine, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Myung-Jin Oh

    Department of Medicine, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Cheng-Hsiang Kuo

    Department of Medicine, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4885-9020
  7. Recep Nigdelioglu

    Department of Medicine, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Angelo Y Meliton

    Department of Medicine, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Leah Witt

    Department of Medicine, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Guohao Dai

    Department of Bioengineering, Northeastern University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Mete Civelek

    Department of Biomedical Engineering, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Nanduri R Prabhakar

    Institute for Integrative Physiology, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Yun Fang

    Department of Medicine, The University of Chicago, Chicago, United States
    For correspondence
    yfang1@medicine.bsd.uchicago.edu
    Competing interests
    The authors declare that no competing interests exist.
  14. Gökhan M Mutlu

    Department of Medicine, The University of Chicago, Chicago, United States
    For correspondence
    gmutlu@medicine.bsd.uchicago.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2056-612X

Funding

National Institutes of Health (T32HL007605)

  • David Wu
  • Myung-Jin Oh

American Heart Association (15POST255900003)

  • Recep Nigdelioglu

National Institutes of Health (F32HL134288)

  • David Wu

National Institutes of Health (R21ES025644)

  • Gökhan M Mutlu

National Institutes of Health (K01AR066579)

  • Robert B Hamanaka

National Institutes of Health (R01ES015024)

  • Gökhan M Mutlu

National Institutes of Health (P01HL090554)

  • Nanduri R Prabhakar

National Institutes of Health (R00HL103789)

  • Yun Fang

American Heart Association (BGIA7080012)

  • Yun Fang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The use of vertebrate animal tissues was approved by the Animal Care and Use Committee of the University of Chicago (Permit # 72281). The use of vertebrate animal tissues obtained from outside the University of Chicago was approved by the Animal Care and Use Committee of the University of Chicago (Permit # 72500).

Copyright

© 2017, Wu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 140
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David Wu
  2. Ru-Ting Huang
  3. Robert B Hamanaka
  4. Matthew D Krause
  5. Myung-Jin Oh
  6. Cheng-Hsiang Kuo
  7. Recep Nigdelioglu
  8. Angelo Y Meliton
  9. Leah Witt
  10. Guohao Dai
  11. Mete Civelek
  12. Nanduri R Prabhakar
  13. Yun Fang
  14. Gökhan M Mutlu
(2017)
HIF-1α is required for disturbed flow-induced metabolic reprogramming in human and porcine vascular endothelium
eLife 6:e25217.
https://doi.org/10.7554/eLife.25217

Share this article

https://doi.org/10.7554/eLife.25217

Further reading

    1. Cell Biology
    Rachel Pudlowski, Lingyi Xu ... Jennifer T Wang
    Research Advance

    Centrioles have a unique, conserved architecture formed by three linked, ‘triplet’, microtubules arranged in ninefold symmetry. The mechanisms by which these triplet microtubules are formed remain unclear but likely involve the noncanonical tubulins delta-tubulin and epsilon-tubulin. Previously, we found that human cells lacking delta-tubulin or epsilon-tubulin form abnormal centrioles, characterized by an absence of triplet microtubules, lack of central core protein POC5, and a futile cycle of centriole formation and disintegration (Wang et al., 2017). Here, we show that human cells lacking either TEDC1 or TEDC2 have similar abnormalities. Using ultrastructure expansion microscopy, we observed that mutant centrioles elongate to the same length as control centrioles in G2 phase and fail to recruit central core scaffold proteins. Remarkably, mutant centrioles also have an expanded proximal region. During mitosis, these mutant centrioles further elongate before fragmenting and disintegrating. All four proteins physically interact and TEDC1 and TEDC2 can form a subcomplex in the absence of the tubulins, supporting an AlphaFold Multimer model of the tetramer. TEDC1 and TEDC2 localize to centrosomes and are mutually dependent on each other and on delta-tubulin and epsilon-tubulin for localization. Our results demonstrate that delta-tubulin, epsilon-tubulin, TEDC1, and TEDC2 function together to promote robust centriole architecture, laying the foundation for future studies on the mechanisms underlying the assembly of triplet microtubules and their interactions with centriole structure.

    1. Cell Biology
    2. Stem Cells and Regenerative Medicine
    Liyi Wang, Shiqi Liu ... Tizhong Shan
    Research Article

    Conjugated linoleic acids (CLAs) can serve as a nutritional intervention to regulate quality, function, and fat infiltration in skeletal muscles, but the specific cytological mechanisms remain unknown. Here, we applied single-nucleus RNA-sequencing (snRNA-seq) to characterize the cytological mechanism of CLAs regulates fat infiltration in skeletal muscles based on pig models. We investigated the regulatory effects of CLAs on cell populations and molecular characteristics in pig muscles and found CLAs could promote the transformation of fast glycolytic myofibers into slow oxidative myofibers. We also observed three subpopulations including SCD+/DGAT2+, FABP5+/SIAH1+, and PDE4D+/PDE7B+ subclusters in adipocytes and CLAs could increase the percentage of SCD+/DGAT2+ adipocytes. RNA velocity analysis showed FABP5+/SIAH1+ and PDE4D+/PDE7B+ adipocytes could differentiate into SCD+/DGAT2+ adipocytes. We further verified the differentiated trajectory of mature adipocytes and identified PDE4D+/PDE7B+ adipocytes could differentiate into SCD+/DGAT2+ and FABP5+/SIAH1+ adipocytes by using high intramuscular fat (IMF) content Laiwu pig models. The cell-cell communication analysis identified the interaction network between adipocytes and other subclusters such as fibro/adipogenic progenitors (FAPs). Pseudotemporal trajectory analysis and RNA velocity analysis also showed FAPs could differentiate into PDE4D+/PDE7B+ preadipocytes and we discovered the differentiated trajectory of preadipocytes into mature adipocytes. Besides, we found CLAs could promote FAPs differentiate into SCD+/DGAT2+ adipocytes via inhibiting c-Jun N-terminal kinase (JNK) signaling pathway in vitro. This study provides a foundation for regulating fat infiltration in skeletal muscles by using nutritional strategies and provides potential opportunities to serve pig as an animal model to study human fat infiltrated diseases.