Synchronized HIV assembly by tunable PIP2 changes reveals PIP2 requirement for stable Gag anchoring

  1. Frauke Mücksch
  2. Vibor Laketa
  3. Barbara Müller
  4. Carsten Schultz
  5. Hans-Georg Kräusslich  Is a corresponding author
  1. University Hospital Heidelberg, Germany
  2. European Molecular Biology Laboratory, Germany

Abstract

HIV-1 assembles at the plasma membrane (PM) of infected cells. PM association of the main structural protein Gag depends on its myristoylated MA domain and PM PI(4,5)P2. Using a novel chemical biology tool that allows rapidly tunable manipulation of PI(4,5)P2 levels in living cells, we show that depletion of PI(4,5)P2 completely prevents Gag PM targeting and assembly site formation. Unexpectedly, PI(4,5)P2 depletion also caused loss of pre-assembled Gag lattices from the PM. Subsequent restoration of PM PI(4,5)P2 reinduced assembly site formation even in the absence of new protein synthesis, indicating that the dissociated Gag molecules remained assembly competent. These results reveal an important role of PI(4,5)P2 for HIV-1 morphogenesis beyond Gag recruitment to the PM and suggest a dynamic equilibrium of Gag-lipid interactions. Furthermore, they establish an experimental system that permits synchronized induction of HIV-1 assembly leading to induced production of infectious virions by targeted modulation of Gag PM targeting.

Article and author information

Author details

  1. Frauke Mücksch

    Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0132-5101
  2. Vibor Laketa

    Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
    Competing interests
    No competing interests declared.
  3. Barbara Müller

    Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5726-5585
  4. Carsten Schultz

    Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    Carsten Schultz, C. Schultz is a shareholder of the company SiChem, which distributes rCDS.
  5. Hans-Georg Kräusslich

    Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
    For correspondence
    hans-georg.kraeusslich@med.uni-heidelberg.de
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8756-329X

Funding

Deutsche Forschungsgemeinschaft (TRR 83 project 14)

  • Hans-Georg Kräusslich

Deutsche Forschungsgemeinschaft (TRR 83 project 2)

  • Carsten Schultz

Deutsche Forschungsgemeinschaft (SFB 1129 project 5)

  • Hans-Georg Kräusslich

Deutsche Forschungsgemeinschaft (SFB 1129 project 6)

  • Barbara Müller

Deutsche Forschungsgemeinschaft (Excellence Cluster CellNetworks Exc81)

  • Barbara Müller
  • Hans-Georg Kräusslich

Deutsches Zentrum für Infektionsforschung (Project 7.5 TTU HIV)

  • Hans-Georg Kräusslich

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Wesley I Sundquist, University of Utah School of Medicine, United States

Version history

  1. Received: January 20, 2017
  2. Accepted: May 25, 2017
  3. Accepted Manuscript published: June 2, 2017 (version 1)
  4. Version of Record published: July 3, 2017 (version 2)

Copyright

© 2017, Mücksch et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,223
    views
  • 452
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Frauke Mücksch
  2. Vibor Laketa
  3. Barbara Müller
  4. Carsten Schultz
  5. Hans-Georg Kräusslich
(2017)
Synchronized HIV assembly by tunable PIP2 changes reveals PIP2 requirement for stable Gag anchoring
eLife 6:e25287.
https://doi.org/10.7554/eLife.25287

Share this article

https://doi.org/10.7554/eLife.25287

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Lucie Crhak Khaitova, Pavlina Mikulkova ... Karel Riha
    Research Article

    Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.

    1. Cell Biology
    Wan-ping Yang, Mei-qi Li ... Qian-qian Luo
    Research Article

    High-altitude polycythemia (HAPC) affects individuals living at high altitudes, characterized by increased red blood cells (RBCs) production in response to hypoxic conditions. The exact mechanisms behind HAPC are not fully understood. We utilized a mouse model exposed to hypobaric hypoxia (HH), replicating the environmental conditions experienced at 6000 m above sea level, coupled with in vitro analysis of primary splenic macrophages under 1% O2 to investigate these mechanisms. Our findings indicate that HH significantly boosts erythropoiesis, leading to erythrocytosis and splenic changes, including initial contraction to splenomegaly over 14 days. A notable decrease in red pulp macrophages (RPMs) in the spleen, essential for RBCs processing, was observed, correlating with increased iron release and signs of ferroptosis. Prolonged exposure to hypoxia further exacerbated these effects, mirrored in human peripheral blood mononuclear cells. Single-cell sequencing showed a marked reduction in macrophage populations, affecting the spleen’s ability to clear RBCs and contributing to splenomegaly. Our findings suggest splenic ferroptosis contributes to decreased RPMs, affecting erythrophagocytosis and potentially fostering continuous RBCs production in HAPC. These insights could guide the development of targeted therapies for HAPC, emphasizing the importance of splenic macrophages in disease pathology.