A cellular mechanism for inverse effectiveness in multisensory integration

Abstract

To build a coherent view of the external world, an organism needs to integrate multiple types of sensory information from different sources, a process known as multisensory integration (MSI). Previously we showed that the temporal dependence of MSI in the optic tectum of Xenopus laevis tadpoles is mediated by the network dynamics of the recruitment of local inhibition by sensory input (Felch et al., 2016). This was one of the first cellular-level mechanisms described for MSI. Here we expand this cellular level view of MSI by focusing on the principle of inverse effectiveness, another central feature of MSI stating that the amount of multisensory enhancement observed inversely depends on the size of unisensory responses. We show that non-linear summation of crossmodal synaptic responses, mediated by NMDA-type glutamate receptor (NMDARs) activation, form the cellular basis for inverse effectiveness, both at the cellular and behavioral levels.

Article and author information

Author details

  1. Torrey LS Truszkowski

    Department of Neuroscience, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Oscar A Carrillo

    Department of Neuroscience, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Julia Bleier

    Department of Neuroscience, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Carolina Ramirez-Vizcarrondo

    Department of Neuroscience, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Daniel L Felch

    Department of Neuroscience, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Molly McQuillan

    Bard College, Annandale-On-Hudson, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Christopher P Truszkowski

    Digital Services, Roger Williams University, Bristol, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Arseny S Khakhalin

    Bard College, Annandale-On-Hudson, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0429-1728
  9. Carlos D Aizenman

    Department of Neuroscience, Brown University, Providence, United States
    For correspondence
    Carlos_Aizenman@brown.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7378-7217

Funding

National Institutes of Health (NIH F31 NS09379001)

  • Torrey LS Truszkowski

National Science Foundation (NSF IOS 1353044)

  • Torrey LS Truszkowski
  • Oscar A Carrillo
  • Julia Bleier
  • Carolina Ramirez-Vizcarrondo
  • Christopher P Truszkowski
  • Carlos D Aizenman

American Physiological Society

  • Oscar A Carrillo
  • Carolina Ramirez-Vizcarrondo

Bard Summer Research Institute, Bard College

  • Molly McQuillan
  • Arseny S Khakhalin

Brown University

  • Oscar A Carrillo
  • Julia Bleier
  • Carolina Ramirez-Vizcarrondo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Gary L Westbrook, Vollum Institute, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (1607000219) of Brown University.

Version history

  1. Received: January 25, 2017
  2. Accepted: March 15, 2017
  3. Accepted Manuscript published: March 18, 2017 (version 1)
  4. Accepted Manuscript updated: March 24, 2017 (version 2)
  5. Version of Record published: March 31, 2017 (version 3)

Copyright

© 2017, Truszkowski et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,190
    Page views
  • 420
    Downloads
  • 20
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Torrey LS Truszkowski
  2. Oscar A Carrillo
  3. Julia Bleier
  4. Carolina Ramirez-Vizcarrondo
  5. Daniel L Felch
  6. Molly McQuillan
  7. Christopher P Truszkowski
  8. Arseny S Khakhalin
  9. Carlos D Aizenman
(2017)
A cellular mechanism for inverse effectiveness in multisensory integration
eLife 6:e25392.
https://doi.org/10.7554/eLife.25392

Share this article

https://doi.org/10.7554/eLife.25392

Further reading

    1. Neuroscience
    Harry Clark, Matthew F Nolan
    Research Article

    Grid firing fields have been proposed as a neural substrate for spatial localisation in general or for path integration in particular. To distinguish these possibilities, we investigate firing of grid and non-grid cells in the mouse medial entorhinal cortex during a location memory task. We find that grid firing can either be anchored to the task environment, or can encode distance travelled independently of the task reference frame. Anchoring varied between and within sessions, while spatial firing of non-grid cells was either coherent with the grid population, or was stably anchored to the task environment. We took advantage of the variability in task-anchoring to evaluate whether and when encoding of location by grid cells might contribute to behaviour. We find that when reward location is indicated by a visual cue, performance is similar regardless of whether grid cells are task-anchored or not, arguing against a role for grid representations when location cues are available. By contrast, in the absence of the visual cue, performance was enhanced when grid cells were anchored to the task environment. Our results suggest that anchoring of grid cells to task reference frames selectively enhances performance when path integration is required.

    1. Neuroscience
    Kiwamu Kudo, Kamalini G Ranasinghe ... Srikantan S Nagarajan
    Research Article

    Alzheimer’s disease (AD) is characterized by the accumulation of amyloid-β and misfolded tau proteins causing synaptic dysfunction, and progressive neurodegeneration and cognitive decline. Altered neural oscillations have been consistently demonstrated in AD. However, the trajectories of abnormal neural oscillations in AD progression and their relationship to neurodegeneration and cognitive decline are unknown. Here, we deployed robust event-based sequencing models (EBMs) to investigate the trajectories of long-range and local neural synchrony across AD stages, estimated from resting-state magnetoencephalography. The increases in neural synchrony in the delta-theta band and the decreases in the alpha and beta bands showed progressive changes throughout the stages of the EBM. Decreases in alpha and beta band synchrony preceded both neurodegeneration and cognitive decline, indicating that frequency-specific neuronal synchrony abnormalities are early manifestations of AD pathophysiology. The long-range synchrony effects were greater than the local synchrony, indicating a greater sensitivity of connectivity metrics involving multiple regions of the brain. These results demonstrate the evolution of functional neuronal deficits along the sequence of AD progression.