Structural basis of transcription arrest by coliphage HK022 nun in an Escherichia coli RNA polymerase elongation complex
Abstract
Coliphage HK022 Nun blocks superinfection by coliphage λ by stalling RNA polymerase (RNAP) translocation specifically on λΔNA.To provide a structural framework to understand how Nun blocks RNAP translocation, we determined structures of Escherichia coli RNAP ternary elongation complexes (TECs) with and without Nun by single-particle cryo-electron microscopy. Nun fits tightly into the TEC by taking advantage of gaps between the RNAP and the nucleic acids. The C-terminal segment of Nun interacts with the RNAP β and β’ subunits inside the RNAP active site cleft as well as with nearly every element of the nucleic-acid scaffold, essentially crosslinking the RNAP and the nucleic acids to prevent translocation, a mechanism supported by the effects of Nun amino acid substitutions. The nature of Nun interactions inside the RNAP active site cleft suggests that RNAP clamp opening is required for Nun to establish its interactions, explaining why Nun acts on paused TECs.
Data availability
-
CryoEM structure of HK022 Nun - E. coli RNA polymerase elongation complexPublicly available at the RCSB Protein Data Bank (accession no: 5UP6).
-
CryoEM structure of HK022 Nun - E. coli RNA polymerase elongation complexPublicly available at the EMBL-EBI Protein Data Bank in Europe (accession no: EMD-8584).
-
CryoEM structure of crosslinked E.coli RNA polymerase elongation complexPublicly available at the RCSB Protein Data Bank (accession no: 5UPA).
-
CryoEM structure of crosslinked E.coli RNA polymerase elongation complexPublicly available at the EMBL-EBI Protein Data Bank in Europe (accession no: EMD-8585).
-
CryoEM structure of E.coli RNA polymerase elongation complexPublicly available at the RCSB Protein Data Bank (accession no: 5UPC).
-
CryoEM structure of E.coli RNA polymerase elongation complexPublicly available at the EMBL-EBI Protein Data Bank in Europe (accession no: EMD-8586).
-
Crystal Structure Analysis of the E.coli holoenzymePublicly available at the RCSB Protein Data Bank (accession no: 4LJZ).
-
Crystal structure of the T. thermophilus RNAP polymerase elongation complex with the NTP substrate analogPublicly available at the RCSB Protein Data Bank (accession no: 2O5J).
Article and author information
Author details
Funding
National Institutes of Health (R35 GM118130)
- Seth A Darst
National Institutes of Health (R01 GM037219)
- Max E Gottesman
National Institutes of Health (P41 GM103314)
- Brian T Chait
Public Health Research Institute Research Support grant
- Arkady Mustaev
National Institutes of Health (P41 GM109824)
- Brian T Chait
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2017, Kang et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 3,747
- views
-
- 786
- downloads
-
- 117
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Biochemistry and Chemical Biology
- Stem Cells and Regenerative Medicine
Human induced pluripotent stem cells (hiPSCs) have great potential to be used as alternatives to embryonic stem cells (hESCs) in regenerative medicine and disease modelling. In this study, we characterise the proteomes of multiple hiPSC and hESC lines derived from independent donors and find that while they express a near-identical set of proteins, they show consistent quantitative differences in the abundance of a subset of proteins. hiPSCs have increased total protein content, while maintaining a comparable cell cycle profile to hESCs, with increased abundance of cytoplasmic and mitochondrial proteins required to sustain high growth rates, including nutrient transporters and metabolic proteins. Prominent changes detected in proteins involved in mitochondrial metabolism correlated with enhanced mitochondrial potential, shown using high-resolution respirometry. hiPSCs also produced higher levels of secreted proteins, including growth factors and proteins involved in the inhibition of the immune system. The data indicate that reprogramming of fibroblasts to hiPSCs produces important differences in cytoplasmic and mitochondrial proteins compared to hESCs, with consequences affecting growth and metabolism. This study improves our understanding of the molecular differences between hiPSCs and hESCs, with implications for potential risks and benefits for their use in future disease modelling and therapeutic applications.
-
- Biochemistry and Chemical Biology
- Structural Biology and Molecular Biophysics
Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.