Tandem hnRNP A1 RNA recognition motifs act in concert to repress the splicing of survival motor neuron exon 7

  1. Irene Beusch
  2. Pierre Barraud  Is a corresponding author
  3. Ahmed Moursy
  4. Antoine Cléry
  5. Frédéric Hai-Trieu Allain  Is a corresponding author
  1. Institute of Molecular Biology and Biophysics, ETH Zurich, Switzerland

Abstract

HnRNP A1 regulates many alternative splicing events by the recognition of splicing silencer elements. Here, we provide the solution structures of its two RNA recognition motifs (RRMs) in complex with short RNA. In addition, we show by NMR that both RRMs of hnRNP A1 can bind simultaneously to a single bipartite motif of the human intronic splicing silencer ISS-N1, which controls survival of motor neuron exon 7 splicing. RRM2 binds to the upstream motif and RRM1 to the downstream motif. Combining the insights from the structure with in cell splicing assays we show that the architecture and organization of the two RRMs is essential to hnRNP A1 function. The disruption of the inter-RRM interaction or the loss of RNA binding capacity of either RRM impairs splicing repression by hnRNP A1. Furthermore, both binding sites within the ISS-N1 are important for splicing repression and their contributions are cumulative rather than synergistic.

Article and author information

Author details

  1. Irene Beusch

    Institute of Molecular Biology and Biophysics, ETH Zurich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Pierre Barraud

    Institute of Molecular Biology and Biophysics, ETH Zurich, Zürich, Switzerland
    For correspondence
    pierre.barraud@cnrs.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4460-8360
  3. Ahmed Moursy

    Institute of Molecular Biology and Biophysics, ETH Zurich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Antoine Cléry

    Institute of Molecular Biology and Biophysics, ETH Zurich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Frédéric Hai-Trieu Allain

    Institute of Molecular Biology and Biophysics, ETH Zurich, Zürich, Switzerland
    For correspondence
    allain@mol.biol.ethz.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2131-6237

Funding

ETH Zurich

  • Frédéric Hai-Trieu Allain

Centre National de la Recherche Scientifique

  • Pierre Barraud

Swiss National Science Foundation NCCR Structural Biology

  • Frédéric Hai-Trieu Allain

Swiss National Science Foundation NCCR RNA and Disease

  • Frédéric Hai-Trieu Allain

SMA Europe

  • Frédéric Hai-Trieu Allain

ETH Fellowship Program (Post-doc fellowship)

  • Pierre Barraud

Novartis Foundation (Post-doc fellowship)

  • Pierre Barraud

Cure SMA

  • Antoine Cléry
  • Frédéric Hai-Trieu Allain

Fondation Suisse de Recherche sur les Maladies Musculaires

  • Antoine Cléry
  • Frédéric Hai-Trieu Allain

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Juan Valcárcel, Centre de Regulació Genòmica (CRG), Barcelona, Spain

Version history

  1. Received: February 3, 2017
  2. Accepted: June 23, 2017
  3. Accepted Manuscript published: June 26, 2017 (version 1)
  4. Version of Record published: July 10, 2017 (version 2)

Copyright

© 2017, Beusch et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,167
    Page views
  • 613
    Downloads
  • 61
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Irene Beusch
  2. Pierre Barraud
  3. Ahmed Moursy
  4. Antoine Cléry
  5. Frédéric Hai-Trieu Allain
(2017)
Tandem hnRNP A1 RNA recognition motifs act in concert to repress the splicing of survival motor neuron exon 7
eLife 6:e25736.
https://doi.org/10.7554/eLife.25736

Share this article

https://doi.org/10.7554/eLife.25736

Further reading

    1. Biochemistry and Chemical Biology
    Jake W Anderson, David Vaisar ... Natalie G Ahn
    Research Article

    Activation of the extracellular signal-regulated kinase-2 (ERK2) by phosphorylation has been shown to involve changes in protein dynamics, as determined by hydrogen-deuterium exchange mass spectrometry (HDX-MS) and NMR relaxation dispersion measurements. These can be described by a global exchange between two conformational states of the active kinase, named ‘L’ and ‘R,’ where R is associated with a catalytically productive ATP-binding mode. An ATP-competitive ERK1/2 inhibitor, Vertex-11e, has properties of conformation selection for the R-state, revealing movements of the activation loop that are allosterically coupled to the kinase active site. However, the features of inhibitors important for R-state selection are unknown. Here, we survey a panel of ATP-competitive ERK inhibitors using HDX-MS and NMR and identify 14 new molecules with properties of R-state selection. They reveal effects propagated to distal regions in the P+1 and helix αF segments surrounding the activation loop, as well as helix αL16. Crystal structures of inhibitor complexes with ERK2 reveal systematic shifts in the Gly loop and helix αC, mediated by a Tyr-Tyr ring stacking interaction and the conserved Lys-Glu salt bridge. The findings suggest a model for the R-state involving small movements in the N-lobe that promote compactness within the kinase active site and alter mobility surrounding the activation loop. Such properties of conformation selection might be exploited to modulate the protein docking interface used by ERK substrates and effectors.

    1. Biochemistry and Chemical Biology
    Anne E Hultgren, Nicole MF Patras, Jenna Hicks
    Feature Article

    Organizations that fund research are keen to ensure that their grant selection processes are fair and equitable for all applicants. In 2020, the Arnold and Mabel Beckman Foundation introduced blinding to the first stage of the process used to review applications for Beckman Young Investigator (BYI) awards: applicants were instructed to blind the technical proposal in their initial Letter of Intent by omitting their name, gender, gender-identifying pronouns, and institutional information. Here we examine the impact of this change by comparing the data on gender and institutional prestige of the applicants in the first four years of the new policy (BYI award years 2021–2024) with data on the last four years of the old policy (2017–2020). We find that under the new policy, the distribution of applicants invited to submit a full application shifted from those affiliated with institutions regarded as more prestigious to those outside of this group, and that this trend continued through to the final program awards. We did not find evidence of a shift in the distribution of applicants with respect to gender.