Structure of a AAA+ unfoldase in the process of unfolding substrate
Abstract
AAA+ unfoldases are thought to unfold substrate through the central pore of their hexameric structures, but how this process occurs is not known. VAT, the Thermoplasma acidophilum homologue of eukaryotic CDC48/p97, works in conjunction with the proteasome to degrade misfolded or damaged proteins. We show that in the presence of ATP, VAT with its regulatory N-terminal domains removed unfolds other VAT complexes as substrate. We captured images of this transient process by electron cryomicroscopy (cryo-EM) to reveal the structure of the substrate-bound intermediate. Substrate binding breaks the six-fold symmetry of the complex, allowing five of the six VAT subunits to constrict into a tight helix that grips an ~80 Å stretch of unfolded protein. The structure suggests a processive hand-over-hand unfolding mechanism, where each VAT subunit releases the substrate in turn before re-engaging further along the target protein, thereby unfolding it.
Data availability
-
VCP like ATPase from T. acidophilum (VAT) - Conformation 1Publicly available at the EMBL-EMD Protein Data Bank in Europe (accession no. EMD-8658).
-
VCP like ATPase from T. acidophilum (VAT) - Substrate bound conformationPublicly available at the EMBL-EMD Protein Data Bank in Europe (accession no. EMD-8659.
-
VCP like ATPase from T. acidophilum (VAT) - Conformation 1Publicly available at the RCSB Protein Data Bank (accession no. 5VC7.
-
VCP like ATPase from T. acidophilum (VAT) - Substrate bound conformationPublicly available at the RCSB Protein Data Bank (accession no. 5VCA).
Article and author information
Author details
Funding
Canadian Institutes of Health Research (MOP133408 MOP81294)
- John L Rubinstein
Natural Sciences and Engineering Research Council of Canada
- Zev A Ripstein
Canada Research Chairs
- John L Rubinstein
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- Edward H Egelman, University of Virginia, United States
Publication history
- Received: February 6, 2017
- Accepted: April 6, 2017
- Accepted Manuscript published: April 8, 2017 (version 1)
- Version of Record published: May 9, 2017 (version 2)
Copyright
© 2017, Ripstein et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 5,395
- Page views
-
- 1,316
- Downloads
-
- 94
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Biochemistry and Chemical Biology
- Structural Biology and Molecular Biophysics
A complex interplay between structure, conformational dynamics and pharmacology defines distant regulation of G protein-coupled receptors.
-
- Biochemistry and Chemical Biology
The glucagon-like peptide-1 receptor (GLP1R) is a broadly expressed target of peptide hormones with essential roles in energy and glucose homeostasis, as well as of the blockbuster weight-loss drugs semaglutide and liraglutide. Despite its large clinical relevance, tools to investigate the precise activation dynamics of this receptor with high spatiotemporal resolution are limited. Here, we introduce a novel genetically encoded sensor based on the engineering of a circularly permuted green fluorescent protein into the human GLP1R, named GLPLight1. We demonstrate that fluorescence signal from GLPLight1 accurately reports the expected receptor conformational activation in response to pharmacological ligands with high sensitivity (max ΔF/F0=528%) and temporal resolution (τON = 4.7 s). We further demonstrated that GLPLight1 shows comparable responses to glucagon-like peptide-1 (GLP-1) derivatives as observed for the native receptor. Using GLPLight1, we established an all-optical assay to characterize a novel photocaged GLP-1 derivative (photo-GLP1) and to demonstrate optical control of GLP1R activation. Thus, the new all-optical toolkit introduced here enhances our ability to study GLP1R activation with high spatiotemporal resolution.