Structure of a AAA+ unfoldase in the process of unfolding substrate

  1. Zev A Ripstein
  2. Rui Huang
  3. Rafal Augustyniak
  4. Lewis E Kay  Is a corresponding author
  5. John L Rubinstein  Is a corresponding author
  1. The Hospital for Sick Children Research Institute, Canada
  2. University of Toronto, Canada

Abstract

AAA+ unfoldases are thought to unfold substrate through the central pore of their hexameric structures, but how this process occurs is not known. VAT, the Thermoplasma acidophilum homologue of eukaryotic CDC48/p97, works in conjunction with the proteasome to degrade misfolded or damaged proteins. We show that in the presence of ATP, VAT with its regulatory N-terminal domains removed unfolds other VAT complexes as substrate. We captured images of this transient process by electron cryomicroscopy (cryo-EM) to reveal the structure of the substrate-bound intermediate. Substrate binding breaks the six-fold symmetry of the complex, allowing five of the six VAT subunits to constrict into a tight helix that grips an ~80 Å stretch of unfolded protein. The structure suggests a processive hand-over-hand unfolding mechanism, where each VAT subunit releases the substrate in turn before re-engaging further along the target protein, thereby unfolding it.

Data availability

The following data sets were generated
    1. Rubinstein et al.
    (2017) VCP like ATPase from T. acidophilum (VAT) - Conformation 1
    Publicly available at the EMBL-EMD Protein Data Bank in Europe (accession no. EMD-8658).
    1. Rubinstein et al.
    (2017) VCP like ATPase from T. acidophilum (VAT) - Substrate bound conformation
    Publicly available at the EMBL-EMD Protein Data Bank in Europe (accession no. EMD-8659.

Article and author information

Author details

  1. Zev A Ripstein

    The Hospital for Sick Children Research Institute, Toronto, Canada
    Competing interests
    No competing interests declared.
  2. Rui Huang

    Department of Biochemistry, University of Toronto, Toronto, Canada
    Competing interests
    No competing interests declared.
  3. Rafal Augustyniak

    Department of Biochemistry, University of Toronto, Toronto, Canada
    Competing interests
    No competing interests declared.
  4. Lewis E Kay

    The Hospital for Sick Children Research Institute, Toronto, Canada
    For correspondence
    kay@pound.med.utoronto.ca
    Competing interests
    Lewis E Kay, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4054-4083
  5. John L Rubinstein

    The Hospital for Sick Children Research Institute, Toronto, Canada
    For correspondence
    john.rubinstein@utoronto.ca
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0566-2209

Funding

Canadian Institutes of Health Research (MOP133408 MOP81294)

  • John L Rubinstein

Natural Sciences and Engineering Research Council of Canada

  • Zev A Ripstein

Canada Research Chairs

  • John L Rubinstein

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Edward H Egelman, University of Virginia, United States

Version history

  1. Received: February 6, 2017
  2. Accepted: April 6, 2017
  3. Accepted Manuscript published: April 8, 2017 (version 1)
  4. Version of Record published: May 9, 2017 (version 2)

Copyright

© 2017, Ripstein et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,718
    views
  • 1,345
    downloads
  • 114
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zev A Ripstein
  2. Rui Huang
  3. Rafal Augustyniak
  4. Lewis E Kay
  5. John L Rubinstein
(2017)
Structure of a AAA+ unfoldase in the process of unfolding substrate
eLife 6:e25754.
https://doi.org/10.7554/eLife.25754

Share this article

https://doi.org/10.7554/eLife.25754

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Isabelle Petit-Hartlein, Annelise Vermot ... Franck Fieschi
    Research Article

    NADPH oxidases (NOX) are transmembrane proteins, widely spread in eukaryotes and prokaryotes, that produce reactive oxygen species (ROS). Eukaryotes use the ROS products for innate immune defense and signaling in critical (patho)physiological processes. Despite the recent structures of human NOX isoforms, the activation of electron transfer remains incompletely understood. SpNOX, a homolog from Streptococcus pneumoniae, can serves as a robust model for exploring electron transfers in the NOX family thanks to its constitutive activity. Crystal structures of SpNOX full-length and dehydrogenase (DH) domain constructs are revealed here. The isolated DH domain acts as a flavin reductase, and both constructs use either NADPH or NADH as substrate. Our findings suggest that hydride transfer from NAD(P)H to FAD is the rate-limiting step in electron transfer. We identify significance of F397 in nicotinamide access to flavin isoalloxazine and confirm flavin binding contributions from both DH and Transmembrane (TM) domains. Comparison with related enzymes suggests that distal access to heme may influence the final electron acceptor, while the relative position of DH and TM does not necessarily correlate with activity, contrary to previous suggestions. It rather suggests requirement of an internal rearrangement, within the DH domain, to switch from a resting to an active state. Thus, SpNOX appears to be a good model of active NOX2, which allows us to propose an explanation for NOX2’s requirement for activation.