The genome and phenome of the green alga Chloroidium sp. UTEX 3007 reveal adaptive traits for desert acclimatization

Abstract

To investigate the phenomic and genomic traits that allow green algae to survive in deserts, we characterized a ubiquitous species, Chloroidium sp. UTEX 3007, which we isolated from multiple locations in the United Arab Emirates (UAE). Metabolomic analyses of Chloroidium sp. UTEX 3007 indicated that the alga accumulates a broad range of carbon sources, including several desiccation tolerance-promoting sugars and unusually large stores of palmitate. Growth assays revealed capacities to grow in salinities from zero to 60 g/L and to grow heterotrophically on >40 distinct carbon sources. Assembly and annotation of genomic reads yielded a 52.5 Mbp genome with 8153 functionally annotated genes. Comparison with other sequenced green algae revealed unique protein families involved in osmotic stress tolerance and saccharide metabolism that support phenomic studies. Our results reveal the robust and flexible biology utilized by a green alga to successfully inhabit a desert coastline.

Data availability

The following data sets were generated

Article and author information

Author details

  1. David R Nelson

    Laboratory of Algal, Systems, and Synthetic Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
    For correspondence
    drn2@nyu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8868-5734
  2. Basel Khraiwesh

    Laboratory of Algal, Systems, and Synthetic Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
    Competing interests
    The authors declare that no competing interests exist.
  3. Weiqi Fu

    Laboratory of Algal, Systems, and Synthetic Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7368-383X
  4. Saleh Alseekh

    Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2067-5235
  5. Ashish Kumar Jaiswal

    Laboratory of Algal, Systems, and Synthetic Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6193-1824
  6. Amphun Chaiboonchoe

    Laboratory of Algal, Systems, and Synthetic Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0009-0806
  7. Khaled M Hazzouri

    Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
    Competing interests
    The authors declare that no competing interests exist.
  8. Matthew J O'Connor

    Core Technology Platform, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
    Competing interests
    The authors declare that no competing interests exist.
  9. Glenn L Butterfoss

    Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
    Competing interests
    The authors declare that no competing interests exist.
  10. Nizar Drou

    Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
    Competing interests
    The authors declare that no competing interests exist.
  11. Jillian D Rowe

    Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
    Competing interests
    The authors declare that no competing interests exist.
  12. Jamil Harb

    Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6334-3746
  13. Alisdair R Fernie

    Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  14. Kristin C Gunsalus

    Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
    Competing interests
    The authors declare that no competing interests exist.
  15. Kourosh Salehi-Ashtiani

    Laboratory of Algal, Systems, and Synthetic Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
    For correspondence
    ksa3@nyu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6521-5243

Funding

NYUAD Institute (Grant (G1205-1205i -1205h -1205e))

  • Kourosh Salehi-Ashtiani

NYUAD Faculty Research Funds

  • Kourosh Salehi-Ashtiani

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Nelson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,781
    views
  • 456
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David R Nelson
  2. Basel Khraiwesh
  3. Weiqi Fu
  4. Saleh Alseekh
  5. Ashish Kumar Jaiswal
  6. Amphun Chaiboonchoe
  7. Khaled M Hazzouri
  8. Matthew J O'Connor
  9. Glenn L Butterfoss
  10. Nizar Drou
  11. Jillian D Rowe
  12. Jamil Harb
  13. Alisdair R Fernie
  14. Kristin C Gunsalus
  15. Kourosh Salehi-Ashtiani
(2017)
The genome and phenome of the green alga Chloroidium sp. UTEX 3007 reveal adaptive traits for desert acclimatization
eLife 6:e25783.
https://doi.org/10.7554/eLife.25783

Share this article

https://doi.org/10.7554/eLife.25783

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Anne-Sophie Pepin, Patrycja A Jazwiec ... Sarah Kimmins
    Research Article Updated

    Paternal obesity has been implicated in adult-onset metabolic disease in offspring. However, the molecular mechanisms driving these paternal effects and the developmental processes involved remain poorly understood. One underexplored possibility is the role of paternally induced effects on placenta development and function. To address this, we investigated paternal high-fat diet-induced obesity in relation to sperm histone H3 lysine 4 tri-methylation signatures, the placenta transcriptome, and cellular composition. C57BL6/J male mice were fed either a control or high-fat diet for 10 weeks beginning at 6 weeks of age. Males were timed-mated with control-fed C57BL6/J females to generate pregnancies, followed by collection of sperm, and placentas at embryonic day (E)14.5. Chromatin immunoprecipitation targeting histone H3 lysine 4 tri-methylation (H3K4me3) followed by sequencing (ChIP-seq) was performed on sperm to define obesity-associated changes in enrichment. Paternal obesity corresponded with altered sperm H3K4me3 at promoters of genes involved in metabolism and development. Notably, altered sperm H3K4me3 was also localized at placental enhancers. Bulk RNA-sequencing on placentas revealed paternal obesity-associated sex-specific changes in expression of genes involved in hypoxic processes such as angiogenesis, nutrient transport, and imprinted genes, with a subset of de-regulated genes showing changes in H3K4me3 in sperm at corresponding promoters. Paternal obesity was also linked to impaired placenta development; specifically, a deconvolution analysis revealed altered trophoblast cell lineage specification. These findings implicate paternal obesity effects on placenta development and function as one potential developmental route to offspring metabolic disease.

    1. Genetics and Genomics
    Thomas J O'Brien, Ida L Barlow ... André EX Brown
    Research Article

    There are thousands of Mendelian diseases with more being discovered weekly and the majority have no approved treatments. To address this need, we require scalable approaches that are relatively inexpensive compared to traditional drug development. In the absence of a validated drug target, phenotypic screening in model organisms provides a route for identifying candidate treatments. Success requires a screenable phenotype. However, the right phenotype and assay may not be obvious for pleiotropic neuromuscular disorders. Here, we show that high-throughput imaging and quantitative phenotyping can be conducted systematically on a panel of C. elegans disease model strains. We used CRISPR genome-editing to create 25 worm models of human Mendelian diseases and phenotyped them using a single standardised assay. All but two strains were significantly different from wild-type controls in at least one feature. The observed phenotypes were diverse, but mutations of genes predicted to have related functions led to similar behavioural differences in worms. As a proof-of-concept, we performed a drug repurposing screen of an FDA-approved compound library, and identified two compounds that rescued the behavioural phenotype of a model of UNC80 deficiency. Our results show that a single assay to measure multiple phenotypes can be applied systematically to diverse Mendelian disease models. The relatively short time and low cost associated with creating and phenotyping multiple strains suggest that high-throughput worm tracking could provide a scalable approach to drug repurposing commensurate with the number of Mendelian diseases.