
The genome and phenome of the green alga Chloroidium sp. UTEX 3007 reveal adaptive traits for desert acclimatization
- Cited 5
- Views 2,229
- Annotations
Abstract
To investigate the phenomic and genomic traits that allow green algae to survive in deserts, we characterized a ubiquitous species, Chloroidium sp. UTEX 3007, which we isolated from multiple locations in the United Arab Emirates (UAE). Metabolomic analyses of Chloroidium sp. UTEX 3007 indicated that the alga accumulates a broad range of carbon sources, including several desiccation tolerance-promoting sugars and unusually large stores of palmitate. Growth assays revealed capacities to grow in salinities from zero to 60 g/L and to grow heterotrophically on >40 distinct carbon sources. Assembly and annotation of genomic reads yielded a 52.5 Mbp genome with 8153 functionally annotated genes. Comparison with other sequenced green algae revealed unique protein families involved in osmotic stress tolerance and saccharide metabolism that support phenomic studies. Our results reveal the robust and flexible biology utilized by a green alga to successfully inhabit a desert coastline.
Article and author information
Author details
Funding
NYUAD Institute (Grant (G1205-1205i -1205h -1205e))
- Kourosh Salehi-Ashtiani
NYUAD Faculty Research Funds
- Kourosh Salehi-Ashtiani
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- Joerg Bohlmann, University of British Columbia, Canada
Publication history
- Received: February 5, 2017
- Accepted: June 15, 2017
- Accepted Manuscript published: June 17, 2017 (version 1)
- Version of Record published: July 13, 2017 (version 2)
- Version of Record updated: August 8, 2017 (version 3)
Copyright
© 2017, Nelson et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,229
- Page views
-
- 321
- Downloads
-
- 5
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.
Download links
Downloads (link to download the article as PDF)
Download citations (links to download the citations from this article in formats compatible with various reference manager tools)
Open citations (links to open the citations from this article in various online reference manager services)
Further reading
-
- Genetics and Genomics
-
- Genetics and Genomics