Cryo-electron tomography reveals novel features of a viral RNA replication compartment

  1. Kenneth J Ertel
  2. Desirée Benefield
  3. Daniel Castaño-Diez
  4. Janice Pennington
  5. Mark Horswill
  6. Johan A den Boon
  7. Marisa Otegui
  8. Paul Ahlquist  Is a corresponding author
  1. Janelia Research Campus, Howard Hughes Medical Institute, United States
  2. University of Wisconsin-Madison, United States
  3. University of Basel, Switzerland

Abstract

Positive-strand RNA viruses, the largest genetic class of viruses, include numerous important pathogens such as Zika virus. These viruses replicate their RNA genomes in novel, membrane-bounded mini-organelles, but the organization of viral proteins and RNAs in these compartments is largely unknown. We used cryo-electron tomography to reveal many previously unrecognized features of Flock house nodavirus (FHV) RNA replication compartments. These spherular invaginations of outer mitochondrial membranes are packed with electron-dense RNA fibrils and their volumes are closely correlated with RNA replication template length. Each spherule's necked aperture is crowned by a striking cupped ring structure containing multifunctional FHV RNA replication protein A. Subtomogram averaging of these crowns revealed twelve-fold symmetry, concentric flanking protrusions, and a central electron density. Many crowns were associated with long cytoplasmic fibrils, likely to be exported progeny RNA. These results provide new mechanistic insights into positive-strand RNA virus replication compartment structure, assembly, function and control.

Article and author information

Author details

  1. Kenneth J Ertel

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Desirée Benefield

    Institute for Molecular Virology, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Daniel Castaño-Diez

    BioEM lab, Biozentrum, University of Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Janice Pennington

    Institute for Molecular Virology, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Mark Horswill

    Institute for Molecular Virology, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Johan A den Boon

    Institute for Molecular Virology, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Marisa Otegui

    Department of Botany, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Paul Ahlquist

    Institute for Molecular Virology, University of Wisconsin-Madison, Madison, United States
    For correspondence
    ahlquist@wisc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4584-9318

Funding

Howard Hughes Medical Institute (Investigator)

  • Paul Ahlquist

Morgridge Institute for Research (Investigator)

  • Paul Ahlquist

National Science Foundation (DBI 1126441)

  • Marisa Otegui
  • Paul Ahlquist

National Science Foundation (MCB 1614965)

  • Marisa Otegui

Rowe Family Virology Venture Fund (Investigator)

  • Paul Ahlquist

National Institutes of Health (T32 AI078985)

  • Desirée Benefield

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Wesley I Sundquist, University of Utah School of Medicine, United States

Version history

  1. Received: February 10, 2017
  2. Accepted: June 20, 2017
  3. Accepted Manuscript published: June 27, 2017 (version 1)
  4. Version of Record published: July 18, 2017 (version 2)

Copyright

© 2017, Ertel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,908
    Page views
  • 1,021
    Downloads
  • 72
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kenneth J Ertel
  2. Desirée Benefield
  3. Daniel Castaño-Diez
  4. Janice Pennington
  5. Mark Horswill
  6. Johan A den Boon
  7. Marisa Otegui
  8. Paul Ahlquist
(2017)
Cryo-electron tomography reveals novel features of a viral RNA replication compartment
eLife 6:e25940.
https://doi.org/10.7554/eLife.25940

Share this article

https://doi.org/10.7554/eLife.25940

Further reading

    1. Microbiology and Infectious Disease
    Nguyen Thi Khanh Nhu, Minh-Duy Phan ... Mark A Schembri
    Research Article

    Neonatal meningitis is a devastating disease associated with high mortality and neurological sequelae. Escherichia coli is the second most common cause of neonatal meningitis in full-term infants (herein NMEC) and the most common cause of meningitis in preterm neonates. Here, we investigated the genomic relatedness of a collection of 58 NMEC isolates spanning 1974–2020 and isolated from seven different geographic regions. We show NMEC are comprised of diverse sequence types (STs), with ST95 (34.5%) and ST1193 (15.5%) the most common. No single virulence gene profile was conserved in all isolates; however, genes encoding fimbrial adhesins, iron acquisition systems, the K1 capsule, and O antigen types O18, O75, and O2 were most prevalent. Antibiotic resistance genes occurred infrequently in our collection. We also monitored the infection dynamics in three patients that suffered recrudescent invasive infection caused by the original infecting isolate despite appropriate antibiotic treatment based on antibiogram profile and resistance genotype. These patients exhibited severe gut dysbiosis. In one patient, the causative NMEC isolate was also detected in the fecal flora at the time of the second infection episode and after treatment. Thus, although antibiotics are the standard of care for NMEC treatment, our data suggest that failure to eliminate the causative NMEC that resides intestinally can lead to the existence of a refractory reservoir that may seed recrudescent infection.

    1. Microbiology and Infectious Disease
    Swati Jain, Gherman Uritskiy ... Venigalla B Rao
    Research Article

    A productive HIV-1 infection in humans is often established by transmission and propagation of a single transmitted/founder (T/F) virus, which then evolves into a complex mixture of variants during the lifetime of infection. An effective HIV-1 vaccine should elicit broad immune responses in order to block the entry of diverse T/F viruses. Currently, no such vaccine exists. An in-depth study of escape variants emerging under host immune pressure during very early stages of infection might provide insights into such a HIV-1 vaccine design. Here, in a rare longitudinal study involving HIV-1 infected individuals just days after infection in the absence of antiretroviral therapy, we discovered a remarkable genetic shift that resulted in near complete disappearance of the original T/F virus and appearance of a variant with H173Y mutation in the variable V2 domain of the HIV-1 envelope protein. This coincided with the disappearance of the first wave of strictly H173-specific antibodies and emergence of a second wave of Y173-specific antibodies with increased breadth. Structural analyses indicated conformational dynamism of the envelope protein which likely allowed selection of escape variants with a conformational switch in the V2 domain from an α-helix (H173) to a β-strand (Y173) and induction of broadly reactive antibody responses. This differential breadth due to a single mutational change was also recapitulated in a mouse model. Rationally designed combinatorial libraries containing 54 conformational variants of V2 domain around position 173 further demonstrated increased breadth of antibody responses elicited to diverse HIV-1 envelope proteins. These results offer new insights into designing broadly effective HIV-1 vaccines.