Dynamics of genomic innovation in the unicellular ancestry of animals

  1. Xavier Grau-Bové  Is a corresponding author
  2. Guifré Torruella
  3. Stuart Donachie
  4. Hiroshi Suga
  5. Guy Leonard
  6. Thomas A Richards
  7. Iñaki Ruiz-Trillo  Is a corresponding author
  1. Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Spain
  2. Université Paris-Sud/Paris-Saclay, France
  3. University of Hawai'i at Mānoa, United States
  4. Prefectural University of Hiroshima, Japan
  5. Living Systems Institute, United Kingdom
  6. University of Exeter, United Kingdom

Abstract

Which genomic innovations underpinned the origin of multicellular animals is still an open debate. Here, we investigate this question by reconstructing the genome architecture and gene family diversity of ancestral premetazoans, aiming to date the emergence of animal-like traits. Our comparative analysis involves genomes from animals and their closest unicellular relatives (the Holozoa), including four new genomes: three Ichthyosporea and Corallochytrium limacisporum. Here we show that the earliest animals were shaped by dynamic changes in genome architecture before the emergence of multicellularity: an early burst of gene diversity in the ancestor of Holozoa, enriched in transcription factors and cell adhesion machinery, was followed by multiple and differently-timed episodes of synteny disruption, intron gain and genome expansions. Thus, the foundations of animal genome architecture were laid before the origin of complex multicellularity – highlighting the necessity of a unicellular perspective to understand early animal evolution.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Xavier Grau-Bové

    Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
    For correspondence
    xavier.graubove@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1978-5824
  2. Guifré Torruella

    Unité d'Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud/Paris-Saclay, Orsay, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6534-4758
  3. Stuart Donachie

    Department of Microbiology, University of Hawai'i at Mānoa, Honolulu, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Hiroshi Suga

    Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Guy Leonard

    Department of Biosciences, Living Systems Institute, Exeter, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4607-2064
  6. Thomas A Richards

    Department of Biosciences, University of Exeter, Exeter, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Iñaki Ruiz-Trillo

    Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
    For correspondence
    inaki.ruiz@multicellgenome.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6547-5304

Funding

Ministerio de Economía y Competitividad (BFU2014-57779-P)

  • Iñaki Ruiz-Trillo

European Commission (ERC-2012-Co -616960)

  • Iñaki Ruiz-Trillo

Ministerio de Economía y Competitividad (BFU-2011-23434)

  • Iñaki Ruiz-Trillo

Generalitat de Catalunya (2014 SGR 619)

  • Iñaki Ruiz-Trillo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Grau-Bové et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,829
    views
  • 937
    downloads
  • 127
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xavier Grau-Bové
  2. Guifré Torruella
  3. Stuart Donachie
  4. Hiroshi Suga
  5. Guy Leonard
  6. Thomas A Richards
  7. Iñaki Ruiz-Trillo
(2017)
Dynamics of genomic innovation in the unicellular ancestry of animals
eLife 6:e26036.
https://doi.org/10.7554/eLife.26036

Share this article

https://doi.org/10.7554/eLife.26036

Further reading

    1. Chromosomes and Gene Expression
    2. Evolutionary Biology
    Gülnihal Kavaklioglu, Alexandra Podhornik ... Christian Seiser
    Research Article

    Repression of retrotransposition is crucial for the successful fitness of a mammalian organism. The domesticated transposon protein L1TD1, derived from LINE-1 (L1) ORF1p, is an RNA-binding protein that is expressed only in some cancers and early embryogenesis. In human embryonic stem cells, it is found to be essential for maintaining pluripotency. In cancer, L1TD1 expression is highly correlative with malignancy progression and as such considered a potential prognostic factor for tumors. However, its molecular role in cancer remains largely unknown. Our findings reveal that DNA hypomethylation induces the expression of L1TD1 in HAP1 human tumor cells. L1TD1 depletion significantly modulates both the proteome and transcriptome and thereby reduces cell viability. Notably, L1TD1 associates with L1 transcripts and interacts with L1 ORF1p protein, thereby facilitating L1 retrotransposition. Our data suggest that L1TD1 collaborates with its ancestral L1 ORF1p as an RNA chaperone, ensuring the efficient retrotransposition of L1 retrotransposons, rather than directly impacting the abundance of L1TD1 targets. In this way, L1TD1 might have an important role not only during early development but also in tumorigenesis.

    1. Chromosomes and Gene Expression
    Shihui Chen, Carolyn Marie Phillips
    Research Article

    RNA interference (RNAi) is a conserved pathway that utilizes Argonaute proteins and their associated small RNAs to exert gene regulatory function on complementary transcripts. While the majority of germline-expressed RNAi proteins reside in perinuclear germ granules, it is unknown whether and how RNAi pathways are spatially organized in other cell types. Here, we find that the small RNA biogenesis machinery is spatially and temporally organized during Caenorhabditis elegans embryogenesis. Specifically, the RNAi factor, SIMR-1, forms visible concentrates during mid-embryogenesis that contain an RNA-dependent RNA polymerase, a poly-UG polymerase, and the unloaded nuclear Argonaute protein, NRDE-3. Curiously, coincident with the appearance of the SIMR granules, the small RNAs bound to NRDE-3 switch from predominantly CSR-class 22G-RNAs to ERGO-dependent 22G-RNAs. NRDE-3 binds ERGO-dependent 22G-RNAs in the somatic cells of larvae and adults to silence ERGO-target genes; here we further demonstrate that NRDE-3-bound, CSR-class 22G-RNAs repress transcription in oocytes. Thus, our study defines two separable roles for NRDE-3, targeting germline-expressed genes during oogenesis to promote global transcriptional repression, and switching during embryogenesis to repress recently duplicated genes and retrotransposons in somatic cells, highlighting the plasticity of Argonaute proteins and the need for more precise temporal characterization of Argonaute-small RNA interactions.