Structure and topology around the cleavage site regulate post-translational cleavage of the HIV-1 gp160 signal peptide

  1. Erik Lee Snapp
  2. Nicholas McCaul
  3. Matthias Quandte
  4. Zuzana Cabartova
  5. Ilja Bontjer
  6. Carolina Källgren
  7. IngMarie Nilsson
  8. Aafke Land
  9. Gunnar von Heijne
  10. Rogier W Sanders
  11. Ineke Braakman  Is a corresponding author
  1. Janelia Research Campus, United States
  2. Utrecht University, Netherlands
  3. dr heinekamp Benelux B.V., Netherlands
  4. National Institute of Public Health, Czech Republic
  5. Academic Medical Center, Netherlands
  6. Stockholm University, Sweden
  7. Stockholm Unversity, Sweden
  8. Institute of Life Sciences, Netherlands

Abstract

Like all other secretory proteins, the HIV-1 envelope glycoprotein gp160, is targeted to the endoplasmic reticulum (ER) by its signal peptide during synthesis. Proper gp160 folding in the ER requires core glycosylation, disulfide-bond formation and proline isomerization. Signal-peptide cleavage occurs only late after gp160 chain termination and is dependent on folding of the soluble subunit gp120 to a near-native conformation. We here detail the mechanism by which co-translational signal-peptide cleavage is prevented. Conserved residues from the signal peptide and residues downstream of the canonical cleavage site form an extended alpha-helix in the ER membrane that covers the cleavage site, thus preventing cleavage. A point mutation in the signal peptide breaks the alpha helix allowing co-translational cleavage. We demonstrate that postponed cleavage of gp160 enhances functional folding of the molecule. The change to early cleavage results in decreased viral fitness compared to wild-type HIV.

Article and author information

Author details

  1. Erik Lee Snapp

    Janelia Research Campus, Ashburn, United States
    Competing interests
    Erik Lee Snapp, Has filed a patent application with and licensed technology to Lucigen Corp (U.S. Patent Application 15/152/908). The technology is not related to this manuscript..
  2. Nicholas McCaul

    Cellular Protein Chemistry, Utrecht University, Utrecht, Netherlands
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7888-7815
  3. Matthias Quandte

    dr heinekamp Benelux B.V., Riethoven, Netherlands
    Competing interests
    No competing interests declared.
  4. Zuzana Cabartova

    National Reference Laboratory for Viral Hepatitis, National Institute of Public Health, Šrobárova, Czech Republic
    Competing interests
    No competing interests declared.
  5. Ilja Bontjer

    Department of Medical Microbiology, Academic Medical Center, Amsterdam, Netherlands
    Competing interests
    No competing interests declared.
  6. Carolina Källgren

    Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
    Competing interests
    No competing interests declared.
  7. IngMarie Nilsson

    Department of Biochemistry and Biophysics, Stockholm Unversity, Stockholm, Sweden
    Competing interests
    No competing interests declared.
  8. Aafke Land

    Hogeschool Utrecht, Institute of Life Sciences, Utrecht, Netherlands
    Competing interests
    No competing interests declared.
  9. Gunnar von Heijne

    Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4490-8569
  10. Rogier W Sanders

    Department of Medical Microbiology, Academic Medical Center, Amsterdam, Netherlands
    Competing interests
    Rogier W Sanders, Is listed as an inventor on patents involving recombinant, soluble native-like Env trimers (EP2975053A1, EP2765138A3, WO/2017/055522A1, WO/2011/108937, WO/2010/041942, WO/2008/103428A2, WO/2003/022869A2). The technology is not related to this manuscript..
  11. Ineke Braakman

    Cellular Protein Chemistry, Utrecht University, Utrecht, Netherlands
    For correspondence
    i.braakman@uu.nl
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1592-4364

Funding

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

  • Nicholas McCaul
  • Matthias Quandte
  • Aafke Land
  • Ineke Braakman

Netherlands AIDS Fund

  • Aafke Land

Seventh Framework Programme (ITN 'Virus Entry')

  • Nicholas McCaul
  • Matthias Quandte
  • Ineke Braakman

National Institutes of Health (NIH AI-51519)

  • Erik Lee Snapp

Swedish Cancer Foundation

  • IngMarie Nilsson
  • Gunnar von Heijne

Knut and Alice Wallenberg Foundation

  • Gunnar von Heijne

European Research Council (ERC-StG-2011-280829-SHEV)

  • Rogier W Sanders

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Snapp et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,256
    views
  • 586
    downloads
  • 43
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Erik Lee Snapp
  2. Nicholas McCaul
  3. Matthias Quandte
  4. Zuzana Cabartova
  5. Ilja Bontjer
  6. Carolina Källgren
  7. IngMarie Nilsson
  8. Aafke Land
  9. Gunnar von Heijne
  10. Rogier W Sanders
  11. Ineke Braakman
(2017)
Structure and topology around the cleavage site regulate post-translational cleavage of the HIV-1 gp160 signal peptide
eLife 6:e26067.
https://doi.org/10.7554/eLife.26067

Share this article

https://doi.org/10.7554/eLife.26067

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Angel D'Oliviera, Xuhang Dai ... Jeffrey S Mugridge
    Research Article

    The SARS-CoV-2 main protease (Mpro or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N2,N2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis. We find that Mpro can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. Evolutionary analysis shows the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. TRMT1 proteolysis results in reduced tRNA binding and elimination of tRNA methyltransferase activity. We also determined the structure of an Mpro-TRMT1 peptide complex that shows how TRMT1 engages the Mpro active site in an uncommon substrate binding conformation. Finally, enzymology and molecular dynamics simulations indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis following substrate binding. Together, these data provide new insights into substrate recognition by SARS-CoV-2 Mpro that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Qian Wang, Jinxin Liu ... Qian Liu
    Research Article

    Paramyxovirus membrane fusion requires an attachment protein for receptor binding and a fusion protein for membrane fusion triggering. Nipah virus (NiV) attachment protein (G) binds to ephrinB2 or -B3 receptors, and fusion protein (F) mediates membrane fusion. NiV-F is a class I fusion protein and is activated by endosomal cleavage. The crystal structure of a soluble GCN4-decorated NiV-F shows a hexamer-of-trimer assembly. Here, we used single-molecule localization microscopy to quantify the NiV-F distribution and organization on cell and virus-like particle membranes at a nanometer precision. We found that NiV-F on biological membranes forms distinctive clusters that are independent of endosomal cleavage or expression levels. The sequestration of NiV-F into dense clusters favors membrane fusion triggering. The nano-distribution and organization of NiV-F are susceptible to mutations at the hexamer-of-trimer interface, and the putative oligomerization motif on the transmembrane domain. We also show that NiV-F nanoclusters are maintained by NiV-F–AP-2 interactions and the clathrin coat assembly. We propose that the organization of NiV-F into nanoclusters facilitates membrane fusion triggering by a mixed population of NiV-F molecules with varied degrees of cleavage and opportunities for interacting with the NiV-G/receptor complex. These observations provide insights into the in situ organization and activation mechanisms of the NiV fusion machinery.