Structure and topology around the cleavage site regulate post-translational cleavage of the HIV-1 gp160 signal peptide
Abstract
Like all other secretory proteins, the HIV-1 envelope glycoprotein gp160, is targeted to the endoplasmic reticulum (ER) by its signal peptide during synthesis. Proper gp160 folding in the ER requires core glycosylation, disulfide-bond formation and proline isomerization. Signal-peptide cleavage occurs only late after gp160 chain termination and is dependent on folding of the soluble subunit gp120 to a near-native conformation. We here detail the mechanism by which co-translational signal-peptide cleavage is prevented. Conserved residues from the signal peptide and residues downstream of the canonical cleavage site form an extended alpha-helix in the ER membrane that covers the cleavage site, thus preventing cleavage. A point mutation in the signal peptide breaks the alpha helix allowing co-translational cleavage. We demonstrate that postponed cleavage of gp160 enhances functional folding of the molecule. The change to early cleavage results in decreased viral fitness compared to wild-type HIV.
Article and author information
Author details
Funding
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
- Nicholas McCaul
- Matthias Quandte
- Aafke Land
- Ineke Braakman
Netherlands AIDS Fund
- Aafke Land
Seventh Framework Programme (ITN 'Virus Entry')
- Nicholas McCaul
- Matthias Quandte
- Ineke Braakman
National Institutes of Health (NIH AI-51519)
- Erik Lee Snapp
Swedish Cancer Foundation
- IngMarie Nilsson
- Gunnar von Heijne
Knut and Alice Wallenberg Foundation
- Gunnar von Heijne
European Research Council (ERC-StG-2011-280829-SHEV)
- Rogier W Sanders
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2017, Snapp et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 5,394
- views
-
- 592
- downloads
-
- 45
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.