1. Biochemistry and Chemical Biology
  2. Microbiology and Infectious Disease
Download icon

A widespread family of serine/threonine protein phosphatases shares a common regulatory switch with proteasomal proteases

  1. Niels Bradshaw
  2. Vladimir M Levdikov
  3. Christina M Zimanyi
  4. Rachelle Gaudet
  5. Anthony J Wilkinson
  6. Richard Losick  Is a corresponding author
  1. Harvard University, United States
  2. University of York, United Kingdom
  3. New York Structural Biology Center, United States
Research Article
  • Cited 10
  • Views 2,335
  • Annotations
Cite this article as: eLife 2017;6:e26111 doi: 10.7554/eLife.26111

Abstract

PP2C phosphatases control biological processes including stress responses, development, and cell division in all kingdoms of life. Diverse regulatory domains adapt PP2C phosphatases to specific functions, but how these domains control phosphatase activity was unknown. We present structures representing active and inactive states of the PP2C phosphatase SpoIIE from Bacillus subtilis. Based on structural analyses and genetic and biochemical experiments, we identify an α-helical switch that shifts a carbonyl oxygen into the active site to coordinate a metal cofactor. Our analysis indicates that this switch is widely conserved among PP2C family members, serving as a platform to control phosphatase activity in response to diverse inputs. Remarkably, the switch is shared with proteasomal proteases, which we identify as evolutionary and structural relatives of PP2C phosphatases. Although these proteases use an unrelated catalytic mechanism, rotation of equivalent helices controls protease activity by movement of the equivalent carbonyl oxygen into the active site.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Niels Bradshaw

    Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6845-4717
  2. Vladimir M Levdikov

    Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Christina M Zimanyi

    New York Structural Biology Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Rachelle Gaudet

    Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9177-054X
  5. Anthony J Wilkinson

    Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Richard Losick

    Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
    For correspondence
    losick@mcb.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5130-6582

Funding

National Institutes of Health (GM18568)

  • Richard Losick

Wellcome (82829)

  • Anthony J Wilkinson

Damon Runyon Cancer Research Foundation (DRG 2051-10)

  • Niels Bradshaw

Jane Coffin Childs Memorial Fund for Medical Research

  • Christina M Zimanyi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Michael T Laub, Massachusetts Institute of Technology, United States

Publication history

  1. Received: February 17, 2017
  2. Accepted: May 18, 2017
  3. Accepted Manuscript published: May 20, 2017 (version 1)
  4. Version of Record published: June 12, 2017 (version 2)

Copyright

© 2017, Bradshaw et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,335
    Page views
  • 482
    Downloads
  • 10
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Developmental Biology
    Lucas C Pantaleão et al.
    Research Article Updated

    Maternal obesity during pregnancy has immediate and long-term detrimental effects on the offspring heart. In this study, we characterized the cardiac and circulatory lipid profiles in late gestation E18.5 fetuses of diet-induced obese pregnant mice and established the changes in lipid abundance and fetal cardiac transcriptomics. We used untargeted and targeted lipidomics and transcriptomics to define changes in the serum and cardiac lipid composition and fatty acid metabolism in male and female fetuses. From these analyses we observed: (1) maternal obesity affects the maternal and fetal serum lipidome distinctly; (2) female fetal heart lipidomes are more sensitive to maternal obesity than males; (3) changes in lipid supply might contribute to early expression of lipolytic genes in mouse hearts exposed to maternal obesity. These results highlight the existence of sexually dimorphic responses of the fetal heart to the same in utero obesogenic environment and identify lipids species that might mediate programming of cardiovascular health.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Marella D Canny, Michael Latham
    Research Article

    The Mre11-Rad50-Nbs1 protein complex is one of the first responders to DNA double strand breaks. Studies have shown that the catalytic activities of the evolutionarily conserved Mre11-Rad50 (MR) core complex depend on an ATP-dependent global conformational change that takes the macromolecule from an open, extended structure in the absence of ATP to a closed, globular structure when ATP is bound. We have previously identified an additional ‘partially open’ conformation using Luminescence Resonance Energy Transfer (LRET) experiments. Here, a combination of LRET and the molecular docking program HADDOCK was used to further investigate this partially open state and identify three conformations of MR in solution: closed, partially open, and open, which are in addition to the extended, apo conformation. Mutants disrupting specific Mre11-Rad50 interactions within each conformation were used in nuclease activity assays on a variety of DNA substrates to help put the three states into a functional perspective. LRET data collected on MR bound to DNA demonstrate that the three conformations also exist when nuclease substrates are bound. These models were further supported with SAXS data which corroborate the presence of multiple states in solution. Together, the data suggest a mechanism for the nuclease activity of the MR complex along the DNA.