Structural dynamics of RbmA governs plasticity of Vibrio cholerae biofilms

  1. Jiunn CN Fong
  2. Andrew Rogers
  3. Alicia K Michael
  4. Nicole C Parsley
  5. William-Cole Cornell
  6. Yu-Cheng Lin
  7. Praveen K Singh
  8. Raimo Hartmann
  9. Knut Drescher
  10. Evgeny Vinogradov
  11. Lars EP Dietrich
  12. Carrie L Partch  Is a corresponding author
  13. Fitnat H Yildiz  Is a corresponding author
  1. University of California, Santa Cruz, United States
  2. University of North Carolina Chapel Hill, United States
  3. Columbia University, United States
  4. Max Planck Institute for Terrestrial Microbiology, Germany
  5. National Research Council, Canada

Abstract

Biofilm formation is critical for the infection cycle of Vibrio cholerae. Vibrio exopolysaccharides (VPS) and the matrix proteins RbmA, Bap1 and RbmC are required for the development of biofilm architecture. We demonstrate that RbmA binds VPS directly and uses a binary structural switch within its first fibronectin type III (FnIII-1) domain to control RbmA structural dynamics and the formation of VPS-dependent higher-order structures. The structural switch in FnIII-1 regulates interactions in trans with the FnIII-2 domain, leading to open (monomeric) or closed (dimeric) interfaces. The ability of RbmA to switch between open and closed states is important for V. cholerae biofilm formation, as RbmA variants with switches that are locked in either of the two states lead to biofilms with altered architecture and structural integrity.

Article and author information

Author details

  1. Jiunn CN Fong

    Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Andrew Rogers

    Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Alicia K Michael

    Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Nicole C Parsley

    Department of Chemistry, University of North Carolina Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. William-Cole Cornell

    Department of Biological Sciences, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Yu-Cheng Lin

    Department of Biological Sciences, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Praveen K Singh

    Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Raimo Hartmann

    Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Knut Drescher

    Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Evgeny Vinogradov

    National Research Council, Ottawa, Canada
    Competing interests
    The authors declare that no competing interests exist.
  11. Lars EP Dietrich

    Department of Biological Sciences, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2049-1137
  12. Carrie L Partch

    Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, United States
    For correspondence
    cpartch@ucsc.edu
    Competing interests
    The authors declare that no competing interests exist.
  13. Fitnat H Yildiz

    Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, United States
    For correspondence
    fyildiz@ucsc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6384-7167

Funding

National Institute of Allergy and Infectious Diseases (RO1AI055987)

  • Fitnat H Yildiz

National Institute of General Medical Sciences (GM107069)

  • Carrie L Partch

Human Frontier Science Program (CDA00084/2015-C)

  • Knut Drescher

National Institute of General Medical Sciences (CA189660)

  • Alicia K Michael

National Institute of Allergy and Infectious Diseases (R01 AI103369)

  • Lars EP Dietrich

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Dianne K Newman, Howard Hughes Medical Institute, California Institute of Technology, United States

Version history

  1. Received: February 19, 2017
  2. Accepted: July 31, 2017
  3. Accepted Manuscript published: August 1, 2017 (version 1)
  4. Version of Record published: September 19, 2017 (version 2)

Copyright

© 2017, Fong et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,665
    views
  • 632
    downloads
  • 52
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jiunn CN Fong
  2. Andrew Rogers
  3. Alicia K Michael
  4. Nicole C Parsley
  5. William-Cole Cornell
  6. Yu-Cheng Lin
  7. Praveen K Singh
  8. Raimo Hartmann
  9. Knut Drescher
  10. Evgeny Vinogradov
  11. Lars EP Dietrich
  12. Carrie L Partch
  13. Fitnat H Yildiz
(2017)
Structural dynamics of RbmA governs plasticity of Vibrio cholerae biofilms
eLife 6:e26163.
https://doi.org/10.7554/eLife.26163

Share this article

https://doi.org/10.7554/eLife.26163

Further reading

    1. Structural Biology and Molecular Biophysics
    Firdousi Parvez, Devika Sangpal ... Jeetender Chugh
    Research Article

    Trans-activation response (TAR) RNA-binding protein (TRBP) has emerged as a key player in the RNA interference pathway, wherein it binds to different pre-microRNAs (miRNAs) and small interfering RNAs (siRNAs), each varying in sequence and/or structure. We hypothesize that TRBP displays dynamic adaptability to accommodate heterogeneity in target RNA structures. Thus, it is crucial to ascertain the role of intrinsic and RNA-induced protein dynamics in RNA recognition and binding. We have previously elucidated the role of intrinsic and RNA-induced conformational exchange in the double-stranded RNA-binding domain 1 (dsRBD1) of TRBP in shape-dependent RNA recognition. The current study delves into the intrinsic and RNA-induced conformational dynamics of the TRBP-dsRBD2 and then compares it with the dsRBD1 study carried out previously. Remarkably, the two domains exhibit differential binding affinity to a 12-bp dsRNA owing to the presence of critical residues and structural plasticity. Furthermore, we report that dsRBD2 depicts constrained conformational plasticity when compared to dsRBD1. Although, in the presence of RNA, dsRBD2 undergoes induced conformational exchange within the designated RNA-binding regions and other residues, the amplitude of the motions remains modest when compared to those observed in dsRBD1. We propose a dynamics-driven model of the two tandem domains of TRBP, substantiating their contributions to the versatility of dsRNA recognition and binding.

    1. Structural Biology and Molecular Biophysics
    Hitendra Negi, Aravind Ravichandran ... Ranabir Das
    Research Article Updated

    The proteasome controls levels of most cellular proteins, and its activity is regulated under stress, quiescence, and inflammation. However, factors determining the proteasomal degradation rate remain poorly understood. Proteasome substrates are conjugated with small proteins (tags) like ubiquitin and Fat10 to target them to the proteasome. It is unclear if the structural plasticity of proteasome-targeting tags can influence substrate degradation. Fat10 is upregulated during inflammation, and its substrates undergo rapid proteasomal degradation. We report that the degradation rate of Fat10 substrates critically depends on the structural plasticity of Fat10. While the ubiquitin tag is recycled at the proteasome, Fat10 is degraded with the substrate. Our results suggest significantly lower thermodynamic stability and faster mechanical unfolding in Fat10 compared to ubiquitin. Long-range salt bridges are absent in the Fat10 structure, creating a plastic protein with partially unstructured regions suitable for proteasome engagement. Fat10 plasticity destabilizes substrates significantly and creates partially unstructured regions in the substrate to enhance degradation. NMR-relaxation-derived order parameters and temperature dependence of chemical shifts identify the Fat10-induced partially unstructured regions in the substrate, which correlated excellently to Fat10-substrate contacts, suggesting that the tag-substrate collision destabilizes the substrate. These results highlight a strong dependence of proteasomal degradation on the structural plasticity and thermodynamic properties of the proteasome-targeting tags.