Structural dynamics of RbmA governs plasticity of Vibrio cholerae biofilms

  1. Jiunn CN Fong
  2. Andrew Rogers
  3. Alicia K Michael
  4. Nicole C Parsley
  5. William-Cole Cornell
  6. Yu-Cheng Lin
  7. Praveen K Singh
  8. Raimo Hartmann
  9. Knut Drescher
  10. Evgeny Vinogradov
  11. Lars EP Dietrich
  12. Carrie L Partch  Is a corresponding author
  13. Fitnat H Yildiz  Is a corresponding author
  1. University of California, Santa Cruz, United States
  2. University of North Carolina Chapel Hill, United States
  3. Columbia University, United States
  4. Max Planck Institute for Terrestrial Microbiology, Germany
  5. National Research Council, Canada

Abstract

Biofilm formation is critical for the infection cycle of Vibrio cholerae. Vibrio exopolysaccharides (VPS) and the matrix proteins RbmA, Bap1 and RbmC are required for the development of biofilm architecture. We demonstrate that RbmA binds VPS directly and uses a binary structural switch within its first fibronectin type III (FnIII-1) domain to control RbmA structural dynamics and the formation of VPS-dependent higher-order structures. The structural switch in FnIII-1 regulates interactions in trans with the FnIII-2 domain, leading to open (monomeric) or closed (dimeric) interfaces. The ability of RbmA to switch between open and closed states is important for V. cholerae biofilm formation, as RbmA variants with switches that are locked in either of the two states lead to biofilms with altered architecture and structural integrity.

Article and author information

Author details

  1. Jiunn CN Fong

    Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Andrew Rogers

    Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Alicia K Michael

    Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Nicole C Parsley

    Department of Chemistry, University of North Carolina Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. William-Cole Cornell

    Department of Biological Sciences, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Yu-Cheng Lin

    Department of Biological Sciences, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Praveen K Singh

    Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Raimo Hartmann

    Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Knut Drescher

    Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Evgeny Vinogradov

    National Research Council, Ottawa, Canada
    Competing interests
    The authors declare that no competing interests exist.
  11. Lars EP Dietrich

    Department of Biological Sciences, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2049-1137
  12. Carrie L Partch

    Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, United States
    For correspondence
    cpartch@ucsc.edu
    Competing interests
    The authors declare that no competing interests exist.
  13. Fitnat H Yildiz

    Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, United States
    For correspondence
    fyildiz@ucsc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6384-7167

Funding

National Institute of Allergy and Infectious Diseases (RO1AI055987)

  • Fitnat H Yildiz

National Institute of General Medical Sciences (GM107069)

  • Carrie L Partch

Human Frontier Science Program (CDA00084/2015-C)

  • Knut Drescher

National Institute of General Medical Sciences (CA189660)

  • Alicia K Michael

National Institute of Allergy and Infectious Diseases (R01 AI103369)

  • Lars EP Dietrich

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Fong et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,736
    views
  • 641
    downloads

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.26163

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Yi-Hsuan Lin, Tae Hun Kim ... Hue Sun Chan
    Research Article

    Liquid-liquid phase separation (LLPS) involving intrinsically disordered protein regions (IDRs) is a major physical mechanism for biological membraneless compartmentalization. The multifaceted electrostatic effects in these biomolecular condensates are exemplified here by experimental and theoretical investigations of the different salt- and ATP-dependent LLPSs of an IDR of messenger RNA-regulating protein Caprin1 and its phosphorylated variant pY-Caprin1, exhibiting, for example, reentrant behaviors in some instances but not others. Experimental data are rationalized by physical modeling using analytical theory, molecular dynamics, and polymer field-theoretic simulations, indicating that interchain ion bridges enhance LLPS of polyelectrolytes such as Caprin1 and the high valency of ATP-magnesium is a significant factor for its colocalization with the condensed phases, as similar trends are observed for other IDRs. The electrostatic nature of these features complements ATP’s involvement in π-related interactions and as an amphiphilic hydrotrope, underscoring a general role of biomolecular condensates in modulating ion concentrations and its functional ramifications.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Cristina Paissoni, Sarita Puri ... Carlo Camilloni
    Research Article

    Both immunoglobulin light-chain (LC) amyloidosis (AL) and multiple myeloma (MM) share the overproduction of a clonal LC. However, while LCs in MM remain soluble in circulation, AL LCs misfold into toxic-soluble species and amyloid fibrils that accumulate in organs, leading to distinct clinical manifestations. The significant sequence variability of LCs has hindered the understanding of the mechanisms driving LC aggregation. Nevertheless, emerging biochemical properties, including dimer stability, conformational dynamics, and proteolysis susceptibility, distinguish AL LCs from those in MM under native conditions. This study aimed to identify a2 conformational fingerprint distinguishing AL from MM LCs. Using small-angle X-ray scattering (SAXS) under native conditions, we analyzed four AL and two MM LCs. We observed that AL LCs exhibited a slightly larger radius of gyration and greater deviations from X-ray crystallography-determined or predicted structures, reflecting enhanced conformational dynamics. SAXS data, integrated with molecular dynamics simulations, revealed a conformational ensemble where LCs adopt multiple states, with variable and constant domains either bent or straight. AL LCs displayed a distinct, low-populated, straight conformation (termed H state), which maximized solvent accessibility at the interface between constant and variable domains. Hydrogen-deuterium exchange mass spectrometry experimentally validated this H state. These findings reconcile diverse experimental observations and provide a precise structural target for future drug design efforts.